Adaptive Inference on Ge

neral Graphical Models

Alexander T. Ihler
U.C. Irvine
Irvine, CA

ihler@ics.uci.edu

Umut A. Acar*
Toyota Tech. Inst.
Chicago, IL
umut@tti-c.org

Abstract

Many algorithms and applications involve re-
peatedly solving variations of the same inference
problem; for example we may want to introduce
new evidence to the model or perform updates
to conditional dependencies. The goalaafap-
tive inferencas to take advantage of what is pre-
served in the model and perform inference more
rapidly than from scratch. In this paper, we de-
scribe techniques for adaptive inference on gen-
eral graphs that support marginal computation
and updates to the conditional probabilities and
dependencies in logarithmic time. We give ex-
perimental results for an implementation of our
algorithm, and demonstrate its potential perfor-
mance benefit in the study of protein structure.

1 Introduction

It is common in many applications to repeatedly perform
inference on a variations of essentially the same graphic

i

model. For example, in a number of learning problems we
may use observed data to modify a portion of the modef
(e.g., fitting an observed marginal distribution), and then

Ozgiir Stimer
Univ. of Chicago
Chicago, IL
osumer@cs.uchicago.edu

Ramgopal R. Mettuf

Univ. of Massachusetts
Amherst, MA

mettu@ecs.umass.edu

and then performing inference from scratch. However,
in general we may wish to assess thousands of potential
changes to the model; for example, the number of possible
mutations in a protein structure grows exponentially with
the number of considered sitesdaptive inferencesfers to

the problem of handling changes to the model (e.g. to con-
ditional dependencies and even graph structure) more effi-
ciently than performing inference from scratch. Delcaer

al. [6] studied this problem under a set of fairly restric-
tive conditions, requiring that the graph be tree-struedur
and supporting only changes to the observed evidence in
the model. They show that updates to observed evidence
may be performed in expect&d(logn) time, wheren is

the size of the graph. More recently, Acatral. [2] gave

a method of supporting more general changes to the model
so long as the model remains tree-structured.

Unfortunately, many graphical models of interest are not
trees, but are “loopy”. In principle, we can perform adap-
tive inference on loopy graphs by construcing their junctio
tree [13] and applying existing frameworks to the junction
tree itself [6, 2]. This approach, however, can be very slow
ﬁince even a small change to the graph can cause the junc-
Ion tree to change dramatically, e.g., creating a cyclaby i
erting a new edge can require a linear number of changes

o the junction tree.

recompute various moments of the new model before upkn this paper, we present techniques for supporting adaptiv

dating the model further [8]. Another example is in the
study of protein structures, where a graphical model can b
used to represent the conformation space of a protein stru
ture [15, 9]. The maximum-likelihood configuration in this

inference on general graphical models efficiently. Given a
€actor graphGG with n nodes, maximum degrée and do-
¢rain sized (variables can také different values), we re-
quire the user to specify a spanning tteef G. We then

model then corresponds to the minimum-energy conformaeonstruct ahierarchical) clusteringof G' with respect to

tion for the corresponding protein. An application of in-

the spanning tre& (Sec. 3). The hierarchical clustering

terest in this setting is to perform amino acid mutations inis a tree of clusters where each cluster represents a sub-

the protein to determine the effect of these mutations to th
structure and the function of the protein.

The changes described in the examples above can,

course, be handled by incorporating them into the mode

*U. A. Acar is supported by a gift from Intel.

graph ofG. A key property of the clustering is that it has
expected) (log n) depth, where the expectations are taken

qer internal randomization. For each cluster we compute

f\cluster functiona partial marginalization of factors in the
cluster. We show that the cluster functions can be com-
puted inO(a™) wherea = d*+! andm is the size of the

'R. R. Mettu is supported by a National Science Foundationboundary of the cluster.

CAREER Award (11S-0643768).

Given such a hierarchical clustering, we show how to comimum a posteriori (MAP) configuration, marginalizing, or
pute the marginal at any variable by performing a traversatomputing the likelihood of observed data. For the pur-
from the top level cluster to the variable. Since maximumposes of this paper, we assume that each varigblakes
path length in the clustering is expect@dog n), we show on values from some finite set and focus primarily on the
that marginals can be computed in expeat&@® logn) problem of marginalization.

time whereg is an upper bound on the boundary size of

all clusters (for a tree-structured factor graph= 2). 2.1 Factor Graphs

The novel contribution of our approach is that our clus-

tering also allows efficient updates to factors and edge inFactor graphs [10] describe the factorization structure of
sertions/deletions in the input graph. We show that aftethe functiong(X') using a bipartite graph consistingfaic-
any of these updates is applied, it is possible to update thor nodes andzariable nodes. Specifically, suppose such
clusteringO(a” logn) time and that marginals computed a graphG consists of factor nodes = {f1,..., f,} and
thereafter correctly reflect the updates. variable nodesX = {z1,...,z,}, and letX; C X de-

Our results generalize the previous techniques for a(taptivnOte .the nelghbors of factor !109"9. Then’G 's said to be

. ; consistent with a functiop(-) if and only if

inference with tree-structured factor graph to loopy gsaph

The main insight is to partition the loopy graph into a span- 9@,) = H £1(X;).

ning tree and a set of non-tree edges and cluster the graph ;

based on the spanning tree only. This enables updating the

hierarchical clustering in expected logarithmic time whenIn a common abuse of notation, we have used the same
an edge is inserted or deleted using RC-Trees. When consymbols to indicate both each variable node and its associ-
puting marginals, contributions of the nodes of the graphated variabler;, and similarly for each factor node and its
are computed in the order specified by the clustering on th@ssociated functioff;.

spanning-tree edges. Compared to previous work on factqg i often be convenient to refer to vertices without spec
trees [2], we also simplify marginal computations. ifying whether they are variable or factor nodes. To this
We note that our bounds depend exponentially on the&nd, we define a set of artificial “factors” to be associated
boundary size of the clusters. While this exponential coswith both factors and variable nodes; for a generic vertex
can be large in general, for many interesting classes otve definey, (X,) = 1 for v = z;, andy, (X,) = f;(X;)
graphs it can be kept small. Moreover, since our expectedpr v = f;.

running times are logarithmic im, our approach can still be

significantly faster than computing from scratch. This ex-2.2 Marginalization

ponential factor is not surprising, since exact inference o

general graphs is NP-hard; conventional, algorithms fer exA classic inference problem is that of marginalizing the
act inference also have an exponential dependence on sorfi#ction g(X). Specifically, for some or all of the;, we

property of the graph such as the tree width. are interested in computing the marginal function
To evaluate the effectiveness of the proposed techniques, g(z;) = Z g(X).
we implemented our algorithm and compared its perfor- X\a

mance against an implementation of sum-product that per-
forms inference on a junction-tree of the given factor When the factor graph representationggfX) is singly-
graph. Our experiments on a synthetic benchmark for facconnected (tree-structured), marginalization can be per-
tor graphs show that our approach can be orders of magnformed efficiently using sum-product [10]. In tree-
tude faster than sum-product. We also investigate the agstructured graphs, sum-product is typically formulated as
plicability of our algorithm to study protein structure,chn @ two-pass sequence: rooting the tree at some noaes-
show that our algorithm is considerable faster than sumsages are sent upward (leaves to root), then back down-
product for modeling several moderately-sized proteins. Ward, after which one may compute the marginal for any
node in the graph. In more general graphs (graphs with
cycles), exact inference is less straightforward. One so-
lution is to use gunction tree[11]; this first constructs a
tree-structured hypergraph 6f, then runs essentially the
scribing structure within a functiop(X) defined over a same inference process to compute marginals. The compu-
tational complexity of this process depends on the selected

set of variables\ = [z1,...,x,] (most commonly a joint . o ; .
probability distribution or energy function over the). :deersgg?ﬁjﬁeaﬁfpsrsgsr?em'al in the size of the cliques, or

Graphical models use this structure to organize computa-
tions involving ¢(-) and construct efficient algorithms for An alternate but essentially equivalent view of exact in-
many inference tasks, including optimization to find a max-ference is given by théucket eliminatioralgorithm [5].

2 Background

Graphical models provide a convenient formalism for de-

Bucket elimination chooses a sequence in which to f
marginalize the variables;, first multiplying together each

of the factors which include;, then summing ovet; to \

create a new factor and returning it to the pool. In tree- h
structured graphs, a marginal functigt{z;) can be found @) @
in a manner similar to the upward pass of sum-product:

rooting the tree at the node of interest, the summation

operations are carried out first on the leaf nodes, followedrigure 1: A clusterC' (shaded) with boundary edges
by their parents, and so on until only the ragtremains. (red) 9C = {(u,g), (v, f), (y,h)}, boundary variables
However, bucket elimination does not impose any partic(hold circles) X, = {u,v,y} and cluster functionpc =
ular elimination order, and we shall see in the sequel thaEX\X g-h=3,g(u,v,z)-h(z,y).

alternative orders may come with other benefits. ‘

Bucket elimination is closely related to junction tree lshse 3.1 Hierarchical Clustering
inference, and an equivalent junction tree may be defined
implicitly by its specified elimination ordering [5]. For a factor grapliz = (X + F, E), aclusterC is simply
a set of vertices ofs. We define thdoundaryof a cluster,
written 0C, as a set of edges with exactly one endpoint in
2.3 RC-Trees for Adaptive Inference C, and theboundary variablesX of C to be the set of
variables (variable nodes) incident to the boundary edges.
In [2], an algorithm for adaptive inference in factor trees i For each cluster, we also definelaster function ¢ as
described using “rake and compress” trees (RC-trees). Thie partial marginalization of all the factors in that chrst
RC-tree data structure automatically selects an elimonati over all variables except the boundary variables:
ordering for the variables in the factor tree using a random-
mate selection procedure, and stores functions at each node vo(Xeo) = Z H £ (X5).
in the RC-tree representing sufficient statistics for itis-su X\Xc f,€C
tree. It was shown that construction of the RC-tree data
structure requires time and space linear in the number dFig. 1 shows an example cluster, its boundary and boundary
verticesn of the factor graph, and produces a balanced tregariables.

with expected heighD(logn). We can then define hierarchical clusteringof G to be

The sufficient statistics stored in the RC-tree can be used set of cluster€ = C,...,C, such that the following
to “query”, or compute marginal distributions in the fac- conditions are satisfied:

tor tree by passing information downward, taking at most

expected)(kd" 2 log n) time, wherek is the maximal de- 1. Every vertex is covered by at least one cluster.
gree of the factor tree, andlis the maximal dimension of
each variable. Moreovechangeso the tree can also be
incorporated in expecte®(kd**+2logn) time, including
changes to the tree structure. The nature of the random-
mate elimination ordering ensures that such changes affect
only logarithmically many of the sufficient statistics. 3. Each clusteC’ has a unique identifier vertex: for
anyC € C there is a unique € C such that no other
cluster contained b¢' containsv. We write v to de-
note the cluster of identified with vertexi.e.,v = C.

2. Clusters are nested: given two clusters either one is a
subset of the other or they do not intersect. Moreover,
if two clusters share a boundary edge, one is a subset
of the other.

Unfortunately, this formulation is restricted to tree-
structured factor graphs, which limits its applicability i
practice. In the following sections, we describe a general-
ization of the RC-tree structure which can cope with cycles 4. For each maximal subclustér’ of C' = v, i.e., ¢’
in the factor graph while maintaining the desireable prop- contained in no smaller cluster thahthere is an edge
erties of the automatically chosen elimination ordering. connecting and some: € C'.

Fig. 2 shows a factor graph and a valid hierarchical cluster-
3 Hierarchical Clustering and Inference ing of the graph. Note that, by condition 3, the finest scale
of the clustering are individual nodes.

We begin by describing a notion of hierarchical clusteringA hierarchical clustering can be constructed bottom-up, by
in factor graphs which is compatible with but more generalcombining groups of sub-clusters which are adjacent to the
than that induced by RC-trees. We then describe how thisame vertex. Since clusters are nested, we can represent a
clustering can be used to compute the marginal distributiomierarchical clustering as@uster treg so that if a cluster

at any vertex of the factor graph. (' is a subset of’, thenC' is an ancestor of” in the tree;

Figure 2: A factor grapld’ and hierarchical clustering 6f.
Edges ofG designated as “non-tree” (see text) are shown
as dashed.

Figure 3: The cluster tree corresponding to Figure 2, show-
ing the boundary of each cluster.
the maximal subclusters 6f are the children of”. A clus-
ter tree representation of the clustering in Fig. 2 is showrs 5 computing Marginal Distributions
in Fig. 3. In the cluster-tree, each cluster is labeled based
on its identifier vertex, e.g., the clusterhas identifieru. As with bucket elimination, the root of the cluster tree pro-
Also shown for each cluster are the boundary edges. vides the marginal function for whatever variable is re-
The cluster boundaries and their cluster functions can bg0ved last. Moreover, itis also straightforward to compute

computed in the cluster tree recursively, based on thosH'® marginal at any other vertex by propagating informa-
of their immediate children. Le§, = {71,...,7;} be tion downward through the cluster tree. We compute the

the set of children ofi in the cluster tree, and legf(v) ~ Marginal distribution of a node as follows.

denote the edges containimgas an endpoint. Then, the | et 9,4 be the set of tree edges on the boundary,dfe.
boundary ofu is the set of edges that are in exactly one ofy,.z = 9un Er, and letvy, . . . , v, be the sequence from

E(u),001,. .., 00, ie. to the root {; = v, v,, the root). We compute a downward
pass of marginalization functions from to v, as

My, ()= > () T wa) TI MaC)

0t = E(u)A0D, A ... A,

where\ is the symmetric set difference operator. X\ X,y ucAs, a€Bu;
The cluster function fofi can be computed as whereAy, = Sy, (4, ,) iS the set of children of; which
are not on the path from to the root, andB;, defined
(Xg) = e (Xs). in terms of the tree edges as follows. #-v;\0rv;—1 =
PulXa) X%; (),ngp (o) {(a1,d)), ..., (az,a))} with a}, ..., a, € By, thenBy, —
h ai,---,a; - We know by the properties of the hierarchical
y the prop

) clustering that each; € B, is an ancestor of; in the
(Recall that they,, simply refer to factors ofy(-).) Any . ster tree. ’

such hierarchical clustering can be used to define a (par-

tial) elimination ordering, with a variable being elimiedt ~Each of these “messages” from parento child v;_; is

in the first (bottom-most) cluster which contains both thecomputed using only information on (messages into) the
variable and all its neighboring factors. In the bucket elim path abovey;. The marginal at node is computed as

ination algorithm following this partial ordering, eaclust

ter functionpc (X) then corresponds to the “new factor” 9" (Xy) = Z ¥o(") H va(-) H Ma(-),

created by marginalizing the factors in a given bucket. X\ X, €Sy acBsy

Finally, we will find it useful to partition the edges ©f
into two sets. In a hierarchical clusteridgat each cluster
C = v there exists at least one edge frano each of its In the previous work [2], the combination 6f being tree-
maximal subcluster€” (if there is more than one, we can structured and the selection criteria for creating clssté
break ties arbitrarily). The collection of these edges formrake or compress operations ensured that the computational
a subtree (or forest) of the original factor graph. We callcomplexity of each of these calculations was limited. For
these edges the “tree” edgés- C E of the hierarchical graphs with cycles, we shall see that these computations
clustering; the remaining edgdsy = E \ Er we call may grow more complex (due to the additional “non-tree”
the “non-tree” edges. In Fig. 2, the non-tree edfigsare edges), but are still bounded and can be controlled suffi-
shown as dashed. ciently well to yield practically useful algorithms.

combining the information above and belaw

4 A Cluster Tree Data Structure we describe in Sec. 4.1). We note that distinguishing be-
tween tree and non-tree edges places no restrictions as to

In this section, we describe a data structure for computing’hat changes can be performed, and the user can still insert

marginal distributions and performing various changes tgnd delete any edge. We simply require that if a tree edge is
the structure of the graphical model efficiently. to be remqved, it be replaced by anothgr tree edge (perhaps

by promoting a non-tree edge) unless its two endpoints are
The idea behind our data structure is to maintain a balanceflot connected via any other path. We handle changes to the
clustering of a factor graph. To do this, we require the usestructure of the factor graph as follows.

provide a factor graph along with a spanning tree (or forest)

for that graph..We then build a hi_erarchical c_Iustering ef.th Replacing a factor: To replace a factof, we first change
factor graph, in which the spegﬂed spanning tree defines i in the input factor graph. We then find the clusfer
the tree edge&'r of the clustering. Using this representa- that identifiesf in the RC-Tree and update all cluster

tion, we can perform marginal queries in time proportional functions on the path fronf to the root. Since each
to the depth of the cluster tree and to the size of the cluster | ster function depends only on its subclusters, this

functions stored at each node. sequence of updates suffices.

To compute and maintain a balanced clustering, we use th@,sert/delete non-tree edgesiet (u, f) be the non-tree
RC-Tree (Rake-and-Compress) tree data structure [1, 3]. eqge being inserted or deleted. We first insert/delete

This data structure constructs a hierarchical clusterfray o (u, f) into/from the input factor graph. We then find
tree by performing rake and compress operations and guar- e clusters: and f in the RC-Tree and visit their an-
antees that the clustering has an expected deitilof;) cestors in a bottom-up traversal. When visiting a clus-

in the size of the tree. The RC-Tree itself mimics the struc- g1 e update its boundary edges, which may now

ture of the clustering: each node is a cluster and there is e to be changed to excluge, f) and recompute
an edge from a cluster/node to its immediate subclusters. s cluster function based on its changed boundary.
Thus, it enables traversing the clustering like an ordinary gjnce only ancestors af and may have(u, v) as

tree. In addition to these operations, RC-Trees enable in- 4 youndary edge, updating only the ancestors suffices.
serting and deleting tree edges and updating the hierarchi-

cal clustering so that it remains balanced under any chang@sert/Delete tree edgesiLet (u, f) be the tree edge be-
to the underlying tree. ing inserted or deleted. We first insert/deléte f)

_ _ into/from the factor graph as requested. We then in-
Since we work with general factor graphs, however, the Sert/de|etdu’ f) from the Spanning tree and use the
RC-Tree representation itself does not suffice (RC-Trees change-propagation method supplied by the RC-Tree
are sufficient only for tree-structured factor graphs). ¥o e to update the clustering [1]. Change-propagation will
tend the representation, we follow the techniques deatribe update the RC-Tree by deleting some of the existing
in Sec. 3 for computing the boundaries and cluster func- clusters and inserting some new clusters. We compute
tions. More specifically, after building the clustering atsd the boundaries and the cluster functions for newly
RC-Tree, we annotate each cluster with its set of boundary created clusters by Starting at the root(s) of the RC-

edges, including both tree and non-tree edges, and compute Tree(s) involved in the operation and performing a
its cluster function as a partial marginalization of itsttas top-down traversal until we visit all new clusters. It is
over all variables except those on the boundary. a property of the RC-Tree data structure that all new

With an RC-tree annotated with boundaries and cluster ~ clusters can be found in this way.

functions, we can query the data structure to compute
marginal functions in the manner described in Sec. 3.2. We note that it is for simplicity of presentation that we

: - assume operations consisting of only single changes—
To supp'o'rt chgnges FO the underlying structure effICIentIy'multiple changes can be performed simultaneously.

we explicitly distinguish between tree edges and non-tree
edges and we require that the spanning tree is kept con-
sistent under changes. This requires, for example, that thg1
user does '.mt delete a spanning tree edge unless the graWe briefly describe the concrete interface to our data struc-
becomes disconnected (i.e., there cannot be non-tree edgt%Sre and analyze the running time for these operations
crossing the cut defined by that tree edge). In other words, '
the user is responsible for ensuring that the connectifity oThe interface supports the following operationstus-
the tree-edges matches the connectivity of the factor grapter(G,T), query(v), replaceFactor(old, new), insert-
as a whole. This approach makes our interface somewhdirecEdge(e), deleteTreeEdge(e), insertTreeEdge(e),
crowded, but there is a reason: we wish to provide comdeleteNonTreeEdge(e). The cluster operation takes a
plete control to the user about the particular spanning treéactor graphGG and a spanning tre€ of G and constructs

being maintained, since this is crucial to performance (a$ierarchical clustering. Thguery operation takes a vertex

Interface and Efficiency

Figure 4: A pairwise factor graph (only variables shown)

and two possible spanning trees (shown with thick edges).

The first tree results in low measurg, (G) = 3, but the
second does nojf, (G) = 8).

of the factor graph and returns the marginal of the vertex

ThereplaceFactor operation replaces a factor with another

moving the edgé€8, h) separates the graph into two com-
ponents consisting of the vertices at the top and those at the
bottom with8 cross edges. This example can be general-
ized ton nodes such that the measure with respect to this
kind of a spanning tree is/2.

By allowing the user to choose the particular spanning tree
being used, our data structure allows the measure of the
graph to be kept small. This is important because as we
prove in the next section, the measure the complexity of
our data structure depends exponentiallysorin essence,
these differences correspond to a good or poor choice of
triangulation in the junction tree algorithm, or elimirati
orderings in bucket elimination. For these algorithms,djoo
heuristics have been found by researchers over time, and
are generally applied in an application-dependent manner.

For a factor grapiz and a spanning tre€, let d be the
domain of its variables and Iétthe maximum degree of its
nodes. We define the constahtaracteristicof G, denoted
a, as the constant = d**'. Note that representing an

(input) factor itself may require this much space.

factor. The rest of the operations insert or delete edges iFor the analysis consider some graphical mo@elith

the input factor graph.

spanning tred’, measure5 = ur(G) and characteristic

To analyze the efficiency of our data structure, we defing*: OUr bounds are in terms of the the characteristic and

a notion of themeasureof a factor graph and its spanning
tree. LetG be a factor graph arifl a spanning tree; we first
define the measure of an edge T', writtenur(e), as one

measure of7. For the bounds we assume that degree of
the input grapht and domain size of the variablésare
positive constants.

plus the maximum size of the number of non-tree edge®ur key lemma, stated below, bounds the time for comput-

that cross a cut defined lzy More precisely, for an edge
from T, letT. andT be the components @f separated by
deletion ofe. LetG, andG”, be the subgraphs ¢t induced
by the vertices ofl, and T, respectively. Thenr(e) is
the size of the cut betweeH, andG.,. The measure off
with respect tol’, written ur(G), is the maximum-sized
cut over all edges iff".

The importance of this measure is that it helps bound th%
size of the boundary for a cluster: if the number of tree

edges that belong to the boundary of a clustel, ithen
the boundary size is at most u(G). Since we use tree
contraction to construct the cluster tree, our clustere laav

most two tree edges in their boundary. Thus, the boundar

of any of our clusters is at mo8tir (G).

ing the boundary and cluster function of a cluster.

Lemma 4.1 (Cluster Cost) The boundary and cluster
function of any cluster can be computediga”) time.

Proof: We first note that since each cluster has at most
two tree edges, it has a boundary of at ni$edges.

onsider computing the boundary for some cluster. We
will first bound the number of edges participating in the
boundary computation. These edges consists of the bound-
ary edges of the subclusters, the edges between the sub-
clusters and the identifier vertex, and the boundary edges
f the cluster itself. For counting purposes, suppose we
place a pebble at each end point. The number of pebbles

Fig. 4 shows a pairwise graphical model (top), with factorscontributed by the: subclusters i2k5. The number of

omitted (one for each edge), and two different spanningpebbles contributed by the edges between the identifier and
trees for it (middle and bottom) with spanning tree edgeghe subclusters i%, because the other endpoints of these

are highlighted. The factor graph has measteith re-

edges are inside the clusters and already counted. Finally

spect to the first spanning tree because removing any trebe pebbles contributed by the boundary edges of the clus-

edge results in a cut of size at mast For example, for
the edge(4, d) the cut size is3—it separates! from the

ter itself is23 because one end point of the boundary edges
is inside subclusters. The total number of edges is half the

graph, which has two incident non-tree edges. Other versize of the pebbles, i.e220H, — (k4 1) + . By

tical tree edges behave equivalently, and for the horizontamaintaining sorted boundaries and performingcat+ 1)-

tree edges, the cut size is two. Thus for the first spanningvay merge technique, we can compute the boundary for
tree the measure of the graph is small. For the second spathe cluster irO (((k + 1) + %) log k) time. This running
ning tree, however, the measure is large. In particular, retime is negligible compared to that of computing the cluster

function, described next. 10° A

O(n) reference
= = =0O(log n) reference

For computing the cluster function note that there can be | |—8—Nave

at most(k + 1)3 + £ boundary variables, because each _** || < o..,,
edge is incident on one variable. The combined domain o —o— Tree Update
these variables then has size at méét-)%+5 . We can NonTree Update
compute the cluster functions by considering each mem

ber of the combined domain and performihgadditions 107
or multiplications, giving total time (k-d*+DA+5)

Graph Size

Time (sec)
[
o

4

Theorem 1 (Hierarchical Clustering) Consider a factor
graph G with n nodes and with spanning trég. Let «

be the characteristic ofs and let3 be the measure aff
with respect tdl". We can compute the cluster tree @f
in O(a® - n) time The resulting cluster tree hasclusters
and expected (log n) depth where the expectation is taken
over internal randomization.

Figure 5:Synthetic data. Log-plot of the runtime of naive
sum—product on a junction tree (BNT) versus our algo-
rithm. Average update times (over 500 trials) are two to
four orders of magnitude faster than performing inference
from scratch.

5.1 Synthetic Data

Proof: Itis known that the cluster tree can be computed inFor our synthetic data set, we randomly generated factor

expectedO(n) time, independent of the cluster functions graphs withn variables andn factors, wheres0 < n <

and boundaries [1, 3], and that the depth of the cluster tre2000, andm = n — 1. We initialize each input graph to

is O(log n) in expectation. Since computing the boundarybe a simple Markov chain, where each facfprdepends

and the cluster function for each cluster takis) time, on variablesr; andz;,, wherel < i < n. This chain

the bound follows. B comprises the set of tree edges in our algorithm. Then, for
given parameterg and/, we add cycles by adding non-tree

We now state the theorem for queries and dynamic changeg.dges as follows: #fis a multiple ofk, we add variables;

Due to space restrictions, we omit the proofs here. Botl'}o.f?Ctorf i1 dto crtlaate a cycli ofllﬁr}gmj T(;ns crea%a:;a
theorems follow from the fact that changes and queries re My structured yet loopy graph with limited tree-width.
quire traversing a path from the root to an update or a querfrhe results for these synthetic experiments are shown
node while perhaps updating cluster functions and boundin Fig. 5. We initially compute the (wall clock) time re-
aries or computing marginalization functions, which can bequired to construct the cluster tree of the graph (using
performed inO(a?) time. k = 2and¢ = 2). To preserve the predictable tree-width of
the problem, updates to the graph structure are performed
in pairs by selecting a non-tree edge at random, removing
it, updating the cluster tree, adding the edge back in and
updating the cluster tree again. We also measure the time
to query the marginal at a particular variable as well as the

:Eg tmhgaﬁgf .23 valtg reaSP:bCI; t%' f\}/\lle caneco;ncrig(tje time to update factor definitions (i.e., the values of the fac
. _marg| variable 1 (o logn) exp .tor and not the number of variables it depends on).
time. Similarly each dynamic change can be processed in

expected)(a” logn) time. We find that our build time is slightly faster than direct in-
ference using the BNT, possibly due to differences in elim-
ination ordering, implicit (cluster tree) vs. explicit fjo-

tion tree) maintenance of the tree-decomposition, or simpl
differences in Matlab programming choices. Most impor-
tantly, we see that all of our update operations exhibit-aver
We compare the performance of a Matlab implementatior@e running times (over 500 trials) that are logarithmic in
of our algorithm to a standard implementation of a junctionn, and are between one to three orders of magnitude faster
tree-based sum-product algorithm provided by the Bayesthan performing inference from scratch.

Net Toolbox (BNT) [12]. We examine the speed-up pro-

vide by adaptive inference in two scenarios: synthetic,datas.2 Application to Protein Structure

which provides some control over the graph size and tree-

width of the problems, and graphical models constructedsraphical models constructed from protein structures have
from known protein backbone structures. been used to successfully predict structural propertigk [1

Theorem 2 (Marginal Queries and Dynamic Changes)
Consider a factor grapldz with n nodes and with spanning
tree T. Let o be the characteristic ofy and let 3 be

5 Experimental Results

Protein | Size | BNT | Build | Query | Update | Speedup| and marginal computations in expect®da’ log n) time,

laie 31 | 0.213] 0.165] 0.008 | 0.012 8.24 wherea is a constant and is the size of a particular graph

1nkd 59 | 0.422| 0.252| 0.011 | 0.012 18.0

Torc 64 105041 04861 0.084 | 0.064 339 cut. Our experiments show that approach provides signifi-

Tvgb | 86 | 0.782] 0.469 | 0.072 | 0.047 6.57 cant speedups on both synthetic and real protein data.

1rzl 91 | 0.885| 0.505| 0.068 | 0.061 6.86

References
Figure 6: Five proteins from the SCWRL benchmark. _
Running times for an implementation of junction tree in [1] LS- Acar, G. Btletl_locT, R_.thHarpe{,hJ. V;_tte?_, an(il '\:Ij Woo.
: HRH : : H ynamizing statiC algorithnms with applications to aynamic
BNT, Ianq trllmes foa building, updatlnga argj((jjlq_ue;ylng u5||ng trees and history independence. AGM-SIAM Symposium
our algorithm. Updates to factors and addition/removal of on Discrete Algorithms (SODA2004.

edges can be applied 3-18 times faster than recomputing }
from scratch. [2] U. Acar, A. T. Ihler, R. R. Mettu, an®® Simer. Adaptive
Bayesian inference. IRroc. NIPS MIT Press, 2008.

: _[3] U. A. Acar, G. Blelloch, and J. Vittes. An experimental
as well as free energy [9]. These models are typically con analysis of change propagation in dynamic treesPie.

structed by taking each node as an amino acid whose states 7y AcM-S1AM W. on Algorithm Eng. and Exp'2005.
representotamers[7], and basing conditional probabili-

ties on a physical energy function (e.g., [14, 4]). A typ- [4] A. A. Canutescu, A. A. Shelenkov, and R. L. Dunbrack Jr.
ical goal of using these models is to efficiently compute Qg{gﬁ_h;g?gigSa(lz?‘igt(g??zg’éffgédlgr‘gggnzzggjcha'n pre-
a maximum-likelihood (i.e. low—energy) conformation of

the protein in its native environment. Updating factors al- [5] R. Dechter. Bucket elimination: A unifying framework for
lows us to study, for example, the effects of amino acid mu- Probabilistic inference. In M. I. Jordan, editdgarning in
tations, and the addition and removal of edges corresponds Graphical Modelspages 75-104. MIT Press, 1998.
directly to allowing backbone motion in the protein. Fur- [6] A. L. Delcher, A. J. Grove, S. Kasif, and J. Pearl.
thermore, the effect of these updates on the model can then Logarithmic-time updates and queries in probabilistic net-
be incorporated in logarithmic time, which was not possi- works. J. Artificial Intelligence Researcld:37-59, 1995.

ble in previous approaches. [7] R. L. Dunbrack Jr. Rotamer libraries in the 21st century.

To test the feasibility of our algorithm for these applica- Curr Opin Struct Bio 12(4):431-440, 2002.

tions, we constructed factor graphs from five moderately- [8] S. E. Fienberg. An iterative procedure for estimation in con-
sized proteins drawn from the SCWRL benchmark [4]. For tingency tablesAnn. Math. Stat.41(3):907-917, 1970.
each pro.tem’ vye ConStru.Cted the a.l fa(?tor graph by takmgrP] H. Kamisetty, E. P Xing, and C. J. Langmead. Free energy
each amino agld as gvanable, adding Interactions betwge estimates of all-atom protein structures using generalized
sequential amino acids as tree edges and steric interaction belief propagation. IProc. 11th Ann. Int'l Conf. Research
as non-tree edges. We performed the same updates as for in Computational Molecular Biologyages 366-380, 2007.
our synthetic test sc_at above. The table in Fig. 6.shows th 0] F. Kschischang, B. Frey, and H.-A. Loeliger. Factor graphs
results of our experiments. We see that for queries and UP- " and the sum-product algorithmEEE Trans. Inform. The-
dates, our approach gives a speedup of 3—18 times over in- ory, 47(2):498-519, February 2001.
ference from scratch. These results are consistent with Ouil Lauri 4 D. Spicgelhalter. Local i h
synthetic experiment above (i.e., graphs with just under 4-1] S: Lauritzenand D. Spiegelhalter. Local computations wit

. . probabilities on graphical structures and their applications to
hundred variables), and _show thgt an adaptlve approach to expert systemsJ. Royal Stat. Society, Ser, B0:157—224,
inference can be useful in modeling protein structure. We 198s.
note however, that for larger proteins, our choice of span-

) . : {121
ning tree (simply the protein backbone) produced graph
whose treewidth was too large for either our algorithm or
sum-product. We are currently exploring other methods fof13] J. Pearl. Probabilistic Reasoning in Intelligent Systems
choosing the spanning tree in a protein factor graph (e.g., Morgan Kaufman, San Mateo, 1988.

based on rigid secondary structure elements). [14] S.J. Weiner, P.A. Kollman, D.A. Case, U.C. Singh, G. Alag-
ona, S. Profeta Jr., and P. Weiner. A new force field for the

. molecular mechanical simulation of nucleic acids and pro-

6 Conclusion teins.J. Am. Chem. Soc106:765-784, 1984.

K. Murphy. The Bayes net toolbox for Matlakkomputing
Science and Statistic3:1-20, 2001.

We describe an efficient algorithm for adaptive inferencel15] C. Yanover and Y. Weiss. Approximate inference and pro-
in general graphical models. Our algorithm constructs a tein folding. InProc. NIPS pages 84-86, 2002.

balanced representation of a spanning tree of the input

graphical model, and represents cycles in the model by an-

notating this data structure. We can support all updates

