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Abstract

Many algorithms and applications involve re-
peatedly solving variations of the same inference
problem; for example we may want to introduce
new evidence to the model or perform updates
to conditional dependencies. The goal ofadap-
tive inferenceis to take advantage of what is pre-
served in the model and perform inference more
rapidly than from scratch. In this paper, we de-
scribe techniques for adaptive inference on gen-
eral graphs that support marginal computation
and updates to the conditional probabilities and
dependencies in logarithmic time. We give ex-
perimental results for an implementation of our
algorithm, and demonstrate its potential perfor-
mance benefit in the study of protein structure.

1 Introduction

It is common in many applications to repeatedly perform
inference on a variations of essentially the same graphical
model. For example, in a number of learning problems we
may use observed data to modify a portion of the model
(e.g., fitting an observed marginal distribution), and then
recompute various moments of the new model before up-
dating the model further [8]. Another example is in the
study of protein structures, where a graphical model can be
used to represent the conformation space of a protein struc-
ture [15, 9]. The maximum-likelihood configuration in this
model then corresponds to the minimum-energy conforma-
tion for the corresponding protein. An application of in-
terest in this setting is to perform amino acid mutations in
the protein to determine the effect of these mutations to the
structure and the function of the protein.

The changes described in the examples above can, of
course, be handled by incorporating them into the model
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and then performing inference from scratch. However,
in general we may wish to assess thousands of potential
changes to the model; for example, the number of possible
mutations in a protein structure grows exponentially with
the number of considered sites.Adaptive inferencerefers to
the problem of handling changes to the model (e.g. to con-
ditional dependencies and even graph structure) more effi-
ciently than performing inference from scratch. Delcheret
al. [6] studied this problem under a set of fairly restric-
tive conditions, requiring that the graph be tree-structured
and supporting only changes to the observed evidence in
the model. They show that updates to observed evidence
may be performed in expectedO(log n) time, wheren is
the size of the graph. More recently, Acaret al. [2] gave
a method of supporting more general changes to the model
so long as the model remains tree-structured.

Unfortunately, many graphical models of interest are not
trees, but are “loopy”. In principle, we can perform adap-
tive inference on loopy graphs by construcing their junction
tree [13] and applying existing frameworks to the junction
tree itself [6, 2]. This approach, however, can be very slow
since even a small change to the graph can cause the junc-
tion tree to change dramatically, e.g., creating a cycle by in-
serting a new edge can require a linear number of changes
to the junction tree.

In this paper, we present techniques for supporting adaptive
inference on general graphical models efficiently. Given a
factor graphG with n nodes, maximum degreek, and do-
main sized (variables can taked different values), we re-
quire the user to specify a spanning treeT of G. We then
construct a(hierarchical) clusteringof G with respect to
the spanning treeT (Sec. 3). The hierarchical clustering
is a tree of clusters where each cluster represents a sub-
graph ofG. A key property of the clustering is that it has
expectedO(log n) depth, where the expectations are taken
over internal randomization. For each cluster we compute
acluster function, a partial marginalization of factors in the
cluster. We show that the cluster functions can be com-
puted inO(αm) whereα = dk+1 andm is the size of the
boundary of the cluster.



Given such a hierarchical clustering, we show how to com-
pute the marginal at any variable by performing a traversal
from the top level cluster to the variable. Since maximum
path length in the clustering is expectedO(log n), we show
that marginals can be computed in expectedO(αβ log n)
time whereβ is an upper bound on the boundary size of
all clusters (for a tree-structured factor graphβ = 2).
The novel contribution of our approach is that our clus-
tering also allows efficient updates to factors and edge in-
sertions/deletions in the input graph. We show that after
any of these updates is applied, it is possible to update the
clusteringO(αβ log n) time and that marginals computed
thereafter correctly reflect the updates.

Our results generalize the previous techniques for adaptive
inference with tree-structured factor graph to loopy graphs.
The main insight is to partition the loopy graph into a span-
ning tree and a set of non-tree edges and cluster the graph
based on the spanning tree only. This enables updating the
hierarchical clustering in expected logarithmic time when
an edge is inserted or deleted using RC-Trees. When com-
puting marginals, contributions of the nodes of the graph
are computed in the order specified by the clustering on the
spanning-tree edges. Compared to previous work on factor
trees [2], we also simplify marginal computations.

We note that our bounds depend exponentially on the
boundary size of the clusters. While this exponential cost
can be large in general, for many interesting classes of
graphs it can be kept small. Moreover, since our expected
running times are logarithmic inn, our approach can still be
significantly faster than computing from scratch. This ex-
ponential factor is not surprising, since exact inference on
general graphs is NP-hard; conventional, algorithms for ex-
act inference also have an exponential dependence on some
property of the graph such as the tree width.

To evaluate the effectiveness of the proposed techniques,
we implemented our algorithm and compared its perfor-
mance against an implementation of sum-product that per-
forms inference on a junction-tree of the given factor
graph. Our experiments on a synthetic benchmark for fac-
tor graphs show that our approach can be orders of magni-
tude faster than sum-product. We also investigate the ap-
plicability of our algorithm to study protein structure, and
show that our algorithm is considerable faster than sum-
product for modeling several moderately-sized proteins.

2 Background

Graphical models provide a convenient formalism for de-
scribing structure within a functiong(X) defined over a
set of variablesX = [x1, . . . , xn] (most commonly a joint
probability distribution or energy function over thexi).
Graphical models use this structure to organize computa-
tions involvingg(·) and construct efficient algorithms for
many inference tasks, including optimization to find a max-

imum a posteriori (MAP) configuration, marginalizing, or
computing the likelihood of observed data. For the pur-
poses of this paper, we assume that each variablexi takes
on values from some finite set and focus primarily on the
problem of marginalization.

2.1 Factor Graphs

Factor graphs [10] describe the factorization structure of
the functiong(X) using a bipartite graph consisting offac-
tor nodes andvariable nodes. Specifically, suppose such
a graphG consists of factor nodesF = {f1, . . . , fm} and
variable nodesX = {x1, . . . , xn}, and letXj ⊆ X de-
note the neighbors of factor nodefj . Then,G is said to be
consistent with a functiong(·) if and only if

g(x1, . . . , xn) =
∏

j

fj(Xj).

In a common abuse of notation, we have used the same
symbols to indicate both each variable node and its associ-
ated variablexi, and similarly for each factor node and its
associated functionfj .

It will often be convenient to refer to vertices without spec-
ifying whether they are variable or factor nodes. To this
end, we define a set of artificial “factors” to be associated
with both factors and variable nodes; for a generic vertexv
we defineψv(Xv) ≡ 1 for v = xi, andψv(Xv) = fj(Xj)
for v = fj .

2.2 Marginalization

A classic inference problem is that of marginalizing the
functiong(X). Specifically, for some or all of thexi, we
are interested in computing the marginal function

gi(xi) =
∑

X\xi

g(X).

When the factor graph representation ofg(X) is singly-
connected (tree-structured), marginalization can be per-
formed efficiently using sum-product [10]. In tree-
structured graphs, sum-product is typically formulated as
a two-pass sequence: rooting the tree at some nodev, mes-
sages are sent upward (leaves to root), then back down-
ward, after which one may compute the marginal for any
node in the graph. In more general graphs (graphs with
cycles), exact inference is less straightforward. One so-
lution is to use ajunction tree[11]; this first constructs a
tree-structured hypergraph ofG, then runs essentially the
same inference process to compute marginals. The compu-
tational complexity of this process depends on the selected
hypergraph and is exponential in the size of the cliques, or
nodes of the hypergraph.

An alternate but essentially equivalent view of exact in-
ference is given by thebucket eliminationalgorithm [5].



Bucket elimination chooses a sequence in which to
marginalize the variablesxi, first multiplying together each
of the factors which includexi, then summing overxi to
create a new factor and returning it to the pool. In tree-
structured graphs, a marginal functiongi(xi) can be found
in a manner similar to the upward pass of sum-product:
rooting the tree at the nodexi of interest, the summation
operations are carried out first on the leaf nodes, followed
by their parents, and so on until only the rootxi remains.
However, bucket elimination does not impose any partic-
ular elimination order, and we shall see in the sequel that
alternative orders may come with other benefits.

Bucket elimination is closely related to junction tree based
inference, and an equivalent junction tree may be defined
implicitly by its specified elimination ordering [5].

2.3 RC-Trees for Adaptive Inference

In [2], an algorithm for adaptive inference in factor trees is
described using “rake and compress” trees (RC-trees). The
RC-tree data structure automatically selects an elimination
ordering for the variables in the factor tree using a random-
mate selection procedure, and stores functions at each node
in the RC-tree representing sufficient statistics for its sub-
tree. It was shown that construction of the RC-tree data
structure requires time and space linear in the number of
verticesn of the factor graph, and produces a balanced tree
with expected heightO(log n).

The sufficient statistics stored in the RC-tree can be used
to “query”, or compute marginal distributions in the fac-
tor tree by passing information downward, taking at most
expectedO(kdk+2 log n) time, wherek is the maximal de-
gree of the factor tree, andd is the maximal dimension of
each variable. Moreover,changesto the tree can also be
incorporated in expectedO(kdk+2 log n) time, including
changes to the tree structure. The nature of the random-
mate elimination ordering ensures that such changes affect
only logarithmically many of the sufficient statistics.

Unfortunately, this formulation is restricted to tree-
structured factor graphs, which limits its applicability in
practice. In the following sections, we describe a general-
ization of the RC-tree structure which can cope with cycles
in the factor graph while maintaining the desireable prop-
erties of the automatically chosen elimination ordering.

3 Hierarchical Clustering and Inference

We begin by describing a notion of hierarchical clustering
in factor graphs which is compatible with but more general
than that induced by RC-trees. We then describe how this
clustering can be used to compute the marginal distribution
at any vertex of the factor graph.
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Figure 1: A clusterC (shaded) with boundary edges
(red) ∂C = {(u, g), (v, f), (y, h)}, boundary variables
(bold circles)Xc = {u, v, y} and cluster functionϕC =
∑

X\Xc
g · h =

∑

x g(u, v, x) · h(x, y).

3.1 Hierarchical Clustering

For a factor graphG = (X + F,E), aclusterC is simply
a set of vertices ofG. We define theboundaryof a cluster,
written ∂C, as a set of edges with exactly one endpoint in
C, and theboundary variablesXC of C to be the set of
variables (variable nodes) incident to the boundary edges.
For each cluster, we also define acluster function ϕC as
the partial marginalization of all the factors in that cluster
over all variables except the boundary variables:

ϕC(XC) =
∑

X\XC

∏

fj∈C

fj(Xj).

Fig. 1 shows an example cluster, its boundary and boundary
variables.

We can then define ahierarchical clusteringof G to be
a set of clustersC = C1, . . . , Cn such that the following
conditions are satisfied:

1. Every vertex is covered by at least one cluster.

2. Clusters are nested: given two clusters either one is a
subset of the other or they do not intersect. Moreover,
if two clusters share a boundary edge, one is a subset
of the other.

3. Each clusterC has a unique identifier vertexv : for
anyC ∈ C there is a uniquev ∈ C such that no other
cluster contained byC containsv. We write v̄ to de-
note the cluster of identified with vertexv, i.e.,v̄ = C.

4. For each maximal subclusterC ′ of C = v̄, i.e., C ′

contained in no smaller cluster thanC, there is an edge
connectingv and someu ∈ C ′.

Fig. 2 shows a factor graph and a valid hierarchical cluster-
ing of the graph. Note that, by condition 3, the finest scale
of the clustering are individual nodes.

A hierarchical clustering can be constructed bottom-up, by
combining groups of sub-clusters which are adjacent to the
same vertex. Since clusters are nested, we can represent a
hierarchical clustering as acluster tree, so that if a cluster
C ′ is a subset ofC, thenC is an ancestor ofC ′ in the tree;
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Figure 2: A factor graphG and hierarchical clustering ofG.
Edges ofG designated as “non-tree” (see text) are shown
as dashed.

the maximal subclusters ofC are the children ofC. A clus-
ter tree representation of the clustering in Fig. 2 is shown
in Fig. 3. In the cluster-tree, each cluster is labeled based
on its identifier vertex, e.g., the clusterū has identifieru.
Also shown for each cluster are the boundary edges.

The cluster boundaries and their cluster functions can be
computed in the cluster tree recursively, based on those
of their immediate children. LetSū = {v̄1, . . . , v̄k} be
the set of children of̄u in the cluster tree, and letE(u)
denote the edges containingu as an endpoint. Then, the
boundary of̄u is the set of edges that are in exactly one of
E(u), ∂v̄1, . . . , ∂v̄k, i.e.

∂ū = E(u)△∂v̄1△ . . .△∂v̄k

where△ is the symmetric set difference operator.

The cluster function for̄u can be computed as

ϕū(Xū) =
∑

X\Xū

ψu(Xu)
∏

v̄∈Sū

ϕv̄(Xv̄).

(Recall that theψu simply refer to factors ofg(·).) Any
such hierarchical clustering can be used to define a (par-
tial) elimination ordering, with a variable being eliminated
in the first (bottom-most) cluster which contains both the
variable and all its neighboring factors. In the bucket elim-
ination algorithm following this partial ordering, each clus-
ter functionϕC(XC) then corresponds to the “new factor”
created by marginalizing the factors in a given bucket.

Finally, we will find it useful to partition the edges ofG
into two sets. In a hierarchical clusteringC, at each cluster
C = v̄ there exists at least one edge fromv̄ to each of its
maximal subclustersC ′ (if there is more than one, we can
break ties arbitrarily). The collection of these edges form
a subtree (or forest) of the original factor graph. We call
these edges the “tree” edgesET ⊆ E of the hierarchical
clustering; the remaining edgesEN = E \ ET we call
the “non-tree” edges. In Fig. 2, the non-tree edgesEN are
shown as dashed.

ē
{(x, e),

(y, e)}

ȳ

{(x, e),
(y, f)}

ū{(u, f),
(u, g)}

ḡ
{(z, g),
(u, f)}

v̄
{(v, f),

(v, h)}

h̄
{(v, f),
(z, h)
(x, h)}

f̄
{(x, e), (z, h),

(z, g)}

x̄ {(z, h), (z, g)}

z̄
{}

Figure 3: The cluster tree corresponding to Figure 2, show-
ing the boundary of each cluster.

3.2 Computing Marginal Distributions

As with bucket elimination, the root of the cluster tree pro-
vides the marginal function for whatever variable is re-
moved last. Moreover, it is also straightforward to compute
the marginal at any other vertex by propagating informa-
tion downward through the cluster tree. We compute the
marginal distribution of a nodev as follows.

Let ∂T ū be the set of tree edges on the boundary ofū, i.e.
∂T ū = ∂ū∩ET , and letv1, . . . , vn be the sequence from̄v
to the root (v1 = v̄, vn the root). We compute a downward
pass of marginalization functions fromvn to v2 as

Mv̄i
(·) =

∑

X\Xv̄i−1

ψvi
(·)

∏

ū∈Av̄i

ϕū(·)
∏

ā∈Bv̄i

Mā(·)

whereAv̄i
= Sv̄i\{v̄i−1} is the set of children of̄vi which

are not on the path from̄v to the root, andBv̄i
defined

in terms of the tree edges as follows. If∂T v̄i\∂T v̄i−1 =
{(a1, a

′
1), . . . , (at, a

′
t)} with a′

1, . . . , a
′
t ∈ v̄i, thenBv̄i

=
{ā1, . . . , āt}. We know by the properties of the hierarchical
clustering that each̄ai ∈ Bv̄i

is an ancestor of̄vi in the
cluster tree.

Each of these “messages” from parentv̄i to child v̄i−1 is
computed using only information on (messages into) the
path abovēvi. The marginal at nodev is computed as

gv(Xv) =
∑

X\Xv

ψv(·)
∏

ū∈Sv̄

ϕū(·)
∏

ā∈Bv̄

Mā(·),

combining the information above and belowv̄.

In the previous work [2], the combination ofG being tree-
structured and the selection criteria for creating clusters via
rake or compress operations ensured that the computational
complexity of each of these calculations was limited. For
graphs with cycles, we shall see that these computations
may grow more complex (due to the additional “non-tree”
edges), but are still bounded and can be controlled suffi-
ciently well to yield practically useful algorithms.



4 A Cluster Tree Data Structure

In this section, we describe a data structure for computing
marginal distributions and performing various changes to
the structure of the graphical model efficiently.

The idea behind our data structure is to maintain a balanced
clustering of a factor graph. To do this, we require the user
provide a factor graph along with a spanning tree (or forest)
for that graph. We then build a hierarchical clustering of the
factor graph, in which the specified spanning tree defines
the tree edgesET of the clustering. Using this representa-
tion, we can perform marginal queries in time proportional
to the depth of the cluster tree and to the size of the cluster
functions stored at each node.

To compute and maintain a balanced clustering, we use the
RC-Tree (Rake-and-Compress) tree data structure [1, 3].
This data structure constructs a hierarchical clustering of a
tree by performing rake and compress operations and guar-
antees that the clustering has an expected depth ofO(log n)
in the size of the tree. The RC-Tree itself mimics the struc-
ture of the clustering: each node is a cluster and there is
an edge from a cluster/node to its immediate subclusters.
Thus, it enables traversing the clustering like an ordinary
tree. In addition to these operations, RC-Trees enable in-
serting and deleting tree edges and updating the hierarchi-
cal clustering so that it remains balanced under any change
to the underlying tree.

Since we work with general factor graphs, however, the
RC-Tree representation itself does not suffice (RC-Trees
are sufficient only for tree-structured factor graphs). To ex-
tend the representation, we follow the techniques described
in Sec. 3 for computing the boundaries and cluster func-
tions. More specifically, after building the clustering andits
RC-Tree, we annotate each cluster with its set of boundary
edges, including both tree and non-tree edges, and compute
its cluster function as a partial marginalization of its factors
over all variables except those on the boundary.

With an RC-tree annotated with boundaries and cluster
functions, we can query the data structure to compute
marginal functions in the manner described in Sec. 3.2.

To support changes to the underlying structure efficiently,
we explicitly distinguish between tree edges and non-tree
edges and we require that the spanning tree is kept con-
sistent under changes. This requires, for example, that the
user does not delete a spanning tree edge unless the graph
becomes disconnected (i.e., there cannot be non-tree edges
crossing the cut defined by that tree edge). In other words,
the user is responsible for ensuring that the connectivity of
the tree-edges matches the connectivity of the factor graph
as a whole. This approach makes our interface somewhat
crowded, but there is a reason: we wish to provide com-
plete control to the user about the particular spanning tree
being maintained, since this is crucial to performance (as

we describe in Sec. 4.1). We note that distinguishing be-
tween tree and non-tree edges places no restrictions as to
what changes can be performed, and the user can still insert
and delete any edge. We simply require that if a tree edge is
to be removed, it be replaced by another tree edge (perhaps
by promoting a non-tree edge) unless its two endpoints are
not connected via any other path. We handle changes to the
structure of the factor graph as follows.

Replacing a factor: To replace a factorf , we first change
it in the input factor graph. We then find the clusterf̄
that identifiesf in the RC-Tree and update all cluster
functions on the path from̄f to the root. Since each
cluster function depends only on its subclusters, this
sequence of updates suffices.

Insert/delete non-tree edges:Let (u, f) be the non-tree
edge being inserted or deleted. We first insert/delete
(u, f) into/from the input factor graph. We then find
the clusters̄u andf̄ in the RC-Tree and visit their an-
cestors in a bottom-up traversal. When visiting a clus-
ter, we update its boundary edges, which may now
need to be changed to exclude(u, f) and recompute
its cluster function based on its changed boundary.
Since only ancestors of̄u and v̄ may have(u, v) as
a boundary edge, updating only the ancestors suffices.

Insert/Delete tree edges:Let (u, f) be the tree edge be-
ing inserted or deleted. We first insert/delete(u, f)
into/from the factor graph as requested. We then in-
sert/delete(u, f) from the spanning tree and use the
change-propagation method supplied by the RC-Tree
to update the clustering [1]. Change-propagation will
update the RC-Tree by deleting some of the existing
clusters and inserting some new clusters. We compute
the boundaries and the cluster functions for newly
created clusters by starting at the root(s) of the RC-
Tree(s) involved in the operation and performing a
top-down traversal until we visit all new clusters. It is
a property of the RC-Tree data structure that all new
clusters can be found in this way.

We note that it is for simplicity of presentation that we
assume operations consisting of only single changes—
multiple changes can be performed simultaneously.

4.1 Interface and Efficiency

We briefly describe the concrete interface to our data struc-
ture and analyze the running time for these operations.

The interface supports the following operations:clus-
ter(G,T), query(v), replaceFactor(old, new), insert-
TreeEdge(e), deleteTreeEdge(e), insertTreeEdge(e),
deleteNonTreeEdge(e). The cluster operation takes a
factor graphG and a spanning treeT of G and constructs
hierarchical clustering. Thequery operation takes a vertex
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Figure 4: A pairwise factor graph (only variables shown)
and two possible spanning trees (shown with thick edges).
The first tree results in low measureµT1

(G) = 3, but the
second does not (µT2

(G) = 8).

of the factor graph and returns the marginal of the vertex.
ThereplaceFactor operation replaces a factor with another
factor. The rest of the operations insert or delete edges in
the input factor graph.

To analyze the efficiency of our data structure, we define
a notion of themeasureof a factor graph and its spanning
tree. LetG be a factor graph andT a spanning tree; we first
define the measure of an edgee ∈ T , writtenµT (e), as one
plus the maximum size of the number of non-tree edges
that cross a cut defined bye. More precisely, for an edgee
from T , letTe andT ′

e be the components ofT separated by
deletion ofe. LetGe andG′

e be the subgraphs ofG induced
by the vertices ofTe andT ′

e respectively. ThenµT (e) is
the size of the cut betweenGe andG′

e. The measure ofG
with respect toT , written µT (G), is the maximum-sized
cut over all edges inT .

The importance of this measure is that it helps bound the
size of the boundary for a cluster: if the number of tree
edges that belong to the boundary of a cluster isb, then
the boundary size is at mostb · µT (G). Since we use tree
contraction to construct the cluster tree, our clusters have at
most two tree edges in their boundary. Thus, the boundary
of any of our clusters is at most2µT (G).

Fig. 4 shows a pairwise graphical model (top), with factors
omitted (one for each edge), and two different spanning
trees for it (middle and bottom) with spanning tree edges
are highlighted. The factor graph has measure3 with re-
spect to the first spanning tree because removing any tree
edge results in a cut of size at most3. For example, for
the edge(4, d) the cut size is3—it separatesd from the
graph, which has two incident non-tree edges. Other ver-
tical tree edges behave equivalently, and for the horizontal
tree edges, the cut size is two. Thus for the first spanning
tree the measure of the graph is small. For the second span-
ning tree, however, the measure is large. In particular, re-

moving the edge(8, h) separates the graph into two com-
ponents consisting of the vertices at the top and those at the
bottom with8 cross edges. This example can be general-
ized ton nodes such that the measure with respect to this
kind of a spanning tree isn/2.

By allowing the user to choose the particular spanning tree
being used, our data structure allows the measure of the
graph to be kept small. This is important because as we
prove in the next section, the measure the complexity of
our data structure depends exponentially onβ. In essence,
these differences correspond to a good or poor choice of
triangulation in the junction tree algorithm, or elimination
orderings in bucket elimination. For these algorithms, good
heuristics have been found by researchers over time, and
are generally applied in an application-dependent manner.

For a factor graphG and a spanning treeT , let d be the
domain of its variables and letk the maximum degree of its
nodes. We define the constantcharacteristicof G, denoted
α, as the constantα = dk+1. Note that representing an
(input) factor itself may require this much space.

For the analysis consider some graphical modelG with
spanning treeT , measureβ = µT (G) and characteristic
α. Our bounds are in terms of the the characteristic and
measure ofG. For the bounds we assume that degree of
the input graphk and domain size of the variablesd are
positive constants.

Our key lemma, stated below, bounds the time for comput-
ing the boundary and cluster function of a cluster.

Lemma 4.1 (Cluster Cost) The boundary and cluster
function of any cluster can be computed inO(αβ) time.

Proof: We first note that since each cluster has at most
two tree edges, it has a boundary of at most2β edges.

Consider computing the boundary for some cluster. We
will first bound the number of edges participating in the
boundary computation. These edges consists of the bound-
ary edges of the subclusters, the edges between the sub-
clusters and the identifier vertex, and the boundary edges
of the cluster itself. For counting purposes, suppose we
place a pebble at each end point. The number of pebbles
contributed by thek subclusters is2kβ. The number of
pebbles contributed by the edges between the identifier and
the subclusters isk, because the other endpoints of these
edges are inside the clusters and already counted. Finally
the pebbles contributed by the boundary edges of the clus-
ter itself is2β because one end point of the boundary edges
is inside subclusters. The total number of edges is half the
size of the pebbles, i.e.,2kβ+2β+k

2 = (k + 1)β + k
2 . By

maintaining sorted boundaries and performing a(k + 1)-
way merge technique, we can compute the boundary for
the cluster inO

(

((k + 1)β + k
2 ) log k

)

time. This running
time is negligible compared to that of computing the cluster



function, described next.

For computing the cluster function note that there can be
at most(k + 1)β + k

2 boundary variables, because each
edge is incident on one variable. The combined domain of
these variables then has size at mostd(k+1)β+ k

2 . We can
compute the cluster functions by considering each mem-
ber of the combined domain and performingk additions
or multiplications, giving total timeO(k ·d(k+1)β+ k

2 ). ¥

Theorem 1 (Hierarchical Clustering) Consider a factor
graph G with n nodes and with spanning treeT . Let α
be the characteristic ofG and letβ be the measure ofG
with respect toT . We can compute the cluster tree ofG
in O(αβ · n) time The resulting cluster tree hasn clusters
and expectedO(log n) depth where the expectation is taken
over internal randomization.

Proof: It is known that the cluster tree can be computed in
expectedO(n) time, independent of the cluster functions
and boundaries [1, 3], and that the depth of the cluster tree
is O(log n) in expectation. Since computing the boundary
and the cluster function for each cluster takesO(αβ) time,
the bound follows. ¥

We now state the theorem for queries and dynamic changes.
Due to space restrictions, we omit the proofs here. Both
theorems follow from the fact that changes and queries re-
quire traversing a path from the root to an update or a query
node while perhaps updating cluster functions and bound-
aries or computing marginalization functions, which can be
performed inO(αβ) time.

Theorem 2 (Marginal Queries and Dynamic Changes)
Consider a factor graphG with n nodes and with spanning
tree T . Let α be the characteristic ofG and let β be
the measure ofG with respect toT . We can compute
the the marginal of a variable inO(αβ log n) expected
time. Similarly each dynamic change can be processed in
expectedO(αβ log n) time.

5 Experimental Results

We compare the performance of a Matlab implementation
of our algorithm to a standard implementation of a junction
tree-based sum-product algorithm provided by the Bayes’
Net Toolbox (BNT) [12]. We examine the speed-up pro-
vide by adaptive inference in two scenarios: synthetic data,
which provides some control over the graph size and tree-
width of the problems, and graphical models constructed
from known protein backbone structures.
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Figure 5:Synthetic data.Log-plot of the runtime of naive
sum–product on a junction tree (BNT) versus our algo-
rithm. Average update times (over 500 trials) are two to
four orders of magnitude faster than performing inference
from scratch.

5.1 Synthetic Data

For our synthetic data set, we randomly generated factor
graphs withn variables andm factors, where50 ≤ n ≤
1000, andm = n − 1. We initialize each input graph to
be a simple Markov chain, where each factorfi depends
on variablesxi andxi+1, where1 ≤ i < n. This chain
comprises the set of tree edges in our algorithm. Then, for
given parametersk andℓ, we add cycles by adding non-tree
edges as follows: ifi is a multiple ofk, we add variablexi

to factorfi+ℓ−1 to create a cycle of lengthℓ. This creates a
fairly structured yet loopy graph with limited tree-width.

The results for these synthetic experiments are shown
in Fig. 5. We initially compute the (wall clock) time re-
quired to construct the cluster tree of the graph (using
k = 2 andℓ = 2). To preserve the predictable tree-width of
the problem, updates to the graph structure are performed
in pairs by selecting a non-tree edge at random, removing
it, updating the cluster tree, adding the edge back in and
updating the cluster tree again. We also measure the time
to query the marginal at a particular variable as well as the
time to update factor definitions (i.e., the values of the fac-
tor and not the number of variables it depends on).

We find that our build time is slightly faster than direct in-
ference using the BNT, possibly due to differences in elim-
ination ordering, implicit (cluster tree) vs. explicit (junc-
tion tree) maintenance of the tree-decomposition, or simply
differences in Matlab programming choices. Most impor-
tantly, we see that all of our update operations exhibit aver-
age running times (over 500 trials) that are logarithmic in
n, and are between one to three orders of magnitude faster
than performing inference from scratch.

5.2 Application to Protein Structure

Graphical models constructed from protein structures have
been used to successfully predict structural properties [15]



Protein Size BNT Build Query Update Speedup
1aie 31 0.213 0.165 0.008 0.012 8.24
1nkd 59 0.422 0.252 0.011 0.012 18.0
1orc 64 0.504 0.486 0.084 0.064 3.39
1vqb 86 0.782 0.469 0.072 0.047 6.57
1rzl 91 0.885 0.505 0.068 0.061 6.86

Figure 6: Five proteins from the SCWRL benchmark.
Running times for an implementation of junction tree in
BNT, and times for building, updating, and querying using
our algorithm. Updates to factors and addition/removal of
edges can be applied 3–18 times faster than recomputing
from scratch.

as well as free energy [9]. These models are typically con-
structed by taking each node as an amino acid whose states
representrotamers[7], and basing conditional probabili-
ties on a physical energy function (e.g., [14, 4]). A typ-
ical goal of using these models is to efficiently compute
a maximum–likelihood (i.e. low–energy) conformation of
the protein in its native environment. Updating factors al-
lows us to study, for example, the effects of amino acid mu-
tations, and the addition and removal of edges corresponds
directly to allowing backbone motion in the protein. Fur-
thermore, the effect of these updates on the model can then
be incorporated in logarithmic time, which was not possi-
ble in previous approaches.

To test the feasibility of our algorithm for these applica-
tions, we constructed factor graphs from five moderately-
sized proteins drawn from the SCWRL benchmark [4]. For
each protein, we constructed the a factor graph by taking
each amino acid as a variable, adding interactions between
sequential amino acids as tree edges and steric interactions
as non-tree edges. We performed the same updates as for
our synthetic test set above. The table in Fig. 6 shows the
results of our experiments. We see that for queries and up-
dates, our approach gives a speedup of 3–18 times over in-
ference from scratch. These results are consistent with our
synthetic experiment above (i.e., graphs with just under a
hundred variables), and show that an adaptive approach to
inference can be useful in modeling protein structure. We
note however, that for larger proteins, our choice of span-
ning tree (simply the protein backbone) produced graphs
whose treewidth was too large for either our algorithm or
sum-product. We are currently exploring other methods for
choosing the spanning tree in a protein factor graph (e.g.,
based on rigid secondary structure elements).

6 Conclusion

We describe an efficient algorithm for adaptive inference
in general graphical models. Our algorithm constructs a
balanced representation of a spanning tree of the input
graphical model, and represents cycles in the model by an-
notating this data structure. We can support all updates

and marginal computations in expectedO(αβ log n) time,
whereα is a constant andβ is the size of a particular graph
cut. Our experiments show that approach provides signifi-
cant speedups on both synthetic and real protein data.
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