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Abstract

Chordal graphs can be used to encode depen-
dency models that are representable by both di-
rected acyclic and undirected graphs. This paper
discusses a very simple antfieient algorithm

to learn the chordal structure of a probabilistic
model from data. The algorithm is a greedy hill-
climbing search algorithm that uses the inclusion
boundary neighborhood over chordal graphs. In
the limit of a large sample size and under ap-
propriate hypotheses on the scoring criterion, we
prove that the algorithm will find a structure that
is inclusion-optimal when the dependency model
of the data-generating distribution can be repre-
sented exactly by an undirected graph. The algo-
rithm is evaluated on simulated datasets.
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Despite the chordality restriction on the structure, tlassl|

of decomposable models is still fairly large and includes,
for example, graphical models with undirected tree struc-
ture. Also, exact marginalization using the junction-tree
algorithm for probabilistic inference over DAGs and UGs
is based on the prior transformation of these graphs into a
chordal graph [5].

A greedy hill-climbing search algorithm is often used to
learn the DAG structure of a Bayesian Network fiBient
choices of search spaces and neighborhoods connecting the
search space are possible. In particular, the search may pro
ceed over the set of Markov equivalence classes of DAG
structures by exploiting the inclusion boundary neighbor-
hood (see [1, 4]). Under appropriate assumptions on the
scoring criterion and on the data-generating distribytéon
greedy algorithm using this inclusion boundary neighbor-
hood returns an inclusion-optimal structure in the limit of
a large sample size (see [2] and [3]). Unfortunately, the
size of the inclusion boundary of an equivalence class of a
DAG structure is in the worst case exponential in the num-
ber of variables, which may prevent the application of this

A graphicaliprobabilistic model makes use of a graF’h OVerstrategy in domains with a large number of variables.
random variables to encode a dependency model, i.e. a set
of marginal and conditional independence relations. Di-The notion of inclusion boundary neighborhood can also
rected acyclic graphs (DAGs) and undirected graphs (UGshe defined over sets of chordal graphs (see Section 2). In
are two popular classes of graphs used to encode déhis context, its size is bounded from above by the square
pendency models, leading to graphical models known asf the number of variables (pairs of vertices) and it can be
Bayesian networks and Markov networks (see [9]). computed easily. In [7], this neighborhood is used to learn

In thi ider the cl f hical d Ithe chordal structure of a decomposable Gaussian model
n this paper, we consider the class of graphical mo e@}/ith a Monte Carlo procedure.

whose structure is a chordal graph, known as the class o
decomposable models. A chordal (or triangulated) graplin this paper, we investigate the optimality propertiesef t

is an undirected graph where every cycle comprising morgreedy hill-climbing search algorithm using the inclusion
than three lines has a chord. The class of dependency motleundary neighborhood to learn a chordal structure. We
els defined by chordal graphs is the intersection of the clasgescribe a local asymptotic consistency property of sgorin
of DAG dependency models and the class of UG depeneriteria that ensures that a greedy search will produce an
dency models. The characterization of the independencigsclusion-optimal chordal structure when the independenc
of decomposable models has been exploited in [6] in orrelations holding in the data-generating distribution ban
der to construct algorithms for recovering from indepen-represented exactly by an undirected graph. We conjecture
dence tests the exact chordal structure of a decomposaliat this property still holds when the independenciesef th
model, and to build minimal chordal approximations of data-generating distribution can be represented exagtly b
UG-isomorphic dependency models. a directed acyclic graph. Hence, we suggest that inclusion



boundary based learning of chordal models is an interesiehordal subgrapAncode such an incorrect independence
ing avenue for leveraging learning of graphical models toassumption. For example, suppose that Figure 1(a) encodes
domains with large numbers of variables. Mo. Then, the graphs of Figure 1(b) and Figure 1(c) are
é)oth inclusion-optimal chordal graphs with respecivig,

The rest of the paper is organized as follows. Section : . X ;
defines precisely the mechanism by which an undirecte(\lll\lhIIe the graph of Figure 1(c) is not. As a special case,

. note that any chordal graph model is theiquechordal

graph encodes a dependency model. It also defines anoc? 2 ) ) )

. . ) : S ) . dependency model which is inclusion-optimal for itself.
discusses the notions of inclusion-optimality and indusi
boundary. Section 3 introduces a local consistency prop¥o conclude this section, let us present the notion of inclu-
erty for scoring criteria defined over chordal structured an sion boundary in the context of chordal graphs. The inclu-
proves that it holds for common criteria such as the BDesion boundary of a chordal gragh is the set of chordal
score. Our claim that greedy search with the inclusiongraphsH satisfying
boundary neighborhood yields inclusion-optimal solusion

is proved there. Section 4 presents some experimental re- 4 1(G) ¢ 1(H) and there is no chordal graghsuch that
sults using simulated datasets. 1(G) ¢ I(K) € I(H), or

e |(H) ¢ I(G) and there is no chordal graphsuch that
2 BACKGROUND I(H) € I1(K) C 1(G).
Consider an undirected grah= (X, L) whose vertex set |
X is a set of random variables and whose set of undirecteé
edges (i.e. lines) is denoted by Given disjoints sets
A, B,C C X, we say thaA andB are separated b9 in G if

is straightforward to describe graphically the inclusio
oundary of a chordal grap®: it consists of the chordal
graphs that dfer fromG by the addition or removal of a

, . single line. This is a consequence of the fact that, for any
all paths between a vertex &and a vertex irB go through two chordal graph$, H such thatH is a subgraph o6,

atleast one vertex i@. The dependency model encoded by .
i ) " . h fch I ., K h
G consists of the set of marginal and conditional mdepen-t ere exists a sequence of chordal graghs . ., Ko suc

dence relationa L B|C such thath andB are separated by thdadtiﬁg a_ silr_:(::jleKTi n_e (iezn[g]l)(”l is obtained fromk; by
Cin G. In the sequel, we sometimes identify an undirecteda '

graph and its dependency model; when we want to distin-

guish them we will denote bi(G) the dependency model 3 INCLUSION-OPTIMALITY OF

encoded by the grapB. GREEDY SEARCH

As mentioned in the introduction, a chordal graph is an

undirected graph where every cycle more than three line§ this section, we first introduce a propertylo€al con-
long has a chord (see Figure 1). sistency for scoring criteria defined over chordal graphs.

Then, we show that if a scoring criterion defined over
DAG dependency models is decomposable and consistent

a b a b a b a b . . o
in the classical sense (see, e.g. [8]) , then it is also lpcall
/ ‘ \ >< consistent when restricted to chordal dependency models.
d c d c d c d c Finally, we prove the claim that a greedy hill-climbing

search using the inclusion boundary neighborhood and a
@) () (© (d) consistent and locally consistent scoring criterion mesur
an inclusion-optimal chordal graph when the dependency
$nodel of the data-generating distribution can be encoded
exactly by an undirected graph.

Figure 1: (a) is undirected, but not chordal since it has th
chordless cycla, b, ¢, d, a of length four. (b), (c) and (d)
are all chordal.
Following the terminology of [3], we say that a scoring cri-
i i ) , o . terion score{ for chordal graphs isocally consistent for
Let us define the notion of inclusion-optimality (aka min- dependency modelif, for any pair of verticesa, b and

imal I-mapness in the terminology of [9]) for chordal 5 qal graphss, H such thatH is obtained fromG by
graphs. Consider a particular dependency mddiel We removinga — b, we have

say that achordal dependency modeM is inclusion-
optimal for Mg if M C Mg and there is nachordal de-
pendency moddil’ such thatM ¢ M’ € M. This notion
has a simple graphical interpretation: a chordal gr&ph
encodes an inclusion-optimal dependency modeMgif,
and only if, (a) it does not encode any independence as- e say thatG’ = (X’,L’) is a (proper) subgraph @ =
sumption that does not hold ikly and (b) all its proper (X,L),iff X’ = X andL ¢ L', i.e. L is a (proper) subset &f .

1. a L bjnes(a) N nes(b) € | = scored) > score@G),

2. a 1 bjnes(a) N nes(b) ¢ | = score@) > scored),



wherenec (a) denotes the sets of neighboring (i.e. adjacentBy consistency of scorg(for I, the restriction of score(
vertices ofain K. over chordal graphs is thus also locally consistent forg

Recall that a scoring criterion scofefor a DAG depen-
dency model encoded b is decomposable if it can be
written as a sum of terms that depend each on only on
vertex and its parents, i.e.

In practice, scoring criteria over DAG dependency models
only satisfy the consistency property asymptotically ia th

fimit of a large sample size. When restricted to chordal
dependency models, such scoring criteria will thus only be

score@) = Z f(v, pag(V)). (1) locally consistent asymptotically.

veV
3.1 Optimality for UG target dependency models
The following proposition states that a consistent and lo-
cally consistent scoring criterion for chordal dependencylThe main result of this paper can now be stated. Its proof
models can be obtained from a consistent and decomposelies on results presented in the appendix.

able scoring criterion for DAG dependency models. More'Proposition 2. If score() is a scoring criterion for chordal

over, It aI_Iows us to computg the scordfdrence between graphs that is consistent and locally consistent for a graph
neighboring chordal graphs incrementally. isomorph dependency model I, then local optimsoofre()
Proposition 1. If score() is a scoring criterion over DAG  with respect to the inclusion boundary neighborhood are
dependency models that is decomposable and consisteiffclusion-optimal for .

for a dependency model I, then it is locally consistent for |

when restricted to chordal graphs and Proor. Let G be a local optimum of scor@(with respect

to the inclusion boundary neighborhood. Let us show by
score@) — score) = f(b, {a} U (nes(a) N nes(b contradiction that (G) € |I. Suppose that(G) \ | # 0.

© &) ( {f} (nes(@) N nes(b))) Sincel satisfies the symmetry, decomposition and inter-

— f(b.n&s(@) N nes (D). (2) section properties (see Proposition 3 in the appendixethe

for chordal graphs G and H such that H is obtained from €xist verticesa andb such thaa L bV \ {a, b} € I(G) \ I.
G by removing the line & b. Hence G does not have the line— b. Let us discuss sepa-
rately the cases where the additiorecf bto G results in a
graphH which is chordal and the cases where the resulting
graphH is not chordal.

Proor. Consider two chordal graplés andH such thatH
is obtained fronG by removing the linea— b. SinceH is
chordal and does not hame b, the subgraph dfl induced
by ney(a) N ney(b) = nes(a) N nes(b) is complete. Hence, Suppose thaH is chordal. ThenH is in the inclusion
the subgraph o6 induced by{a, b} U (nez(a) N nez(b))  boundary ofG. By strong uniona L b|V \ {a,b} ¢ |

is complete. Ifoy,...,0x is any ordering ofnes(a) N implies thata L bjney(a) N ney(b) ¢ 1. By local consis-
nes(b), there exists a perfect orderingof G starting with  tency, we thus have scokd) > score(s) andG is not a
a,01,...,0b. LetK be the DAG obtained from directing local optimum.

the lines ofG according too and letL be the DAG ob-
tained fromK by removinga — b. Note thatk andL have
no v-structure, scor€) = scoreK), scoref) = score(),

pa.(b) = nez(a) N nes(b) andpax (b) = {a} U pa.(b). By

decomposability of scorg( we thus have

Suppose thatl is not chordal. There exists a chordless cy-
cleinH of length> 4. Consider the set of chordless cycles
in H of maximum lengtim > 4 and the corresponding set
of paths inG betweena andb of lengthn = m-1 > 3.
LetAg = {a}, Ay = {b}and, fori = 1,...,n-1, letA be
_ the set of vertices that can be reached starting feolny
score@) - scoret) = f(b.{a} U (nes(8) N nes(b))) hopping along lines on one of the above paths between
- f(b,nes(@ Nnes(). (3)  andb. By strong uniona L bV \ {a,b} ¢ | implies that
a1 blA,-1 ¢ |I. By Lemma 4 (see the appendix), there thus
Let Abe a complete DAG obtained by orienting the lines of gxistsi < {1,...,n—1) such thatA_; 1 A.1lA ¢ | or
a complete undirected graph according to a vertex ordering ; A; ¢ |. Let us discuss the two possibilities separately.
Starting witha, 04, ..., 0k, b and letB be the DAG obtained First, suppose thabd_1 L AlA ¢ 1. By Composition,
from A by removinga — b. We havepag(b) = pa.(b),  there exisu € A_; andv € A5 such thau 1 VIA ¢ .
paa(b) = pax(b), dim(B) < dim(A), I(A) = 0 and By chordality of G, note that each se induces a com-
_ plete subgraph. Hence there is a cycle of lengthithout
'(B) = {a L bines(@)Nnes(b), b L aines(2)nnes(b)}. (4) chord passing through andv in H and thus no line be-
By decomposability of scorg( we have tweenu andv in G. By maximality of this cycle, adding
u — v to G results in a chordal grapH’ in the inclusion
scorefy) — scoreB) = scoreK) —score().  (5)  poundary ofG. Sincenes(u) N nes(v) € A, we have
2The subgraph o6 = (X, L) inducedby X’ C X is the graph U L Vines(u) N nes(v) € | by strong union. By local con-
G’ = (X,L’), whereL’ = LN (X' x X). sistency, we thus have scorE] > score(s) andG is not



a local optimum. Second, suppose taat. A, € | for 4 EXPERIMENTAL RESULTS

somei € {1,...,n— 1} and consider any vertex € A,.

By decomposition, we hava L u € |. There exists a This section describes the experiments performed to assess
path ps,..., px in G betweenp; = aandpx = uwhere the learning algorithm. The following settings were con-
no line is a chord. By transitivitya L u € | implies that  sidered to generate simulated datasets:

pj L pj+1 € | for somej € {1,...,k - 1}. Since the line

Pj — Pj+1 is not a chord, the grapH’ obtained fromG by

removing p; — pj+1 is chordal andH’ is in the inclusion
boundary ofG. By strong uniorp; L pj.1 € | implies that
p;j L pj+ines(p;) N nes(pj+1) € I. By local consistency,

e 20 or 50 binary random variables,

e a generating distribution with a chordal structure or a
DAG structure.

we thus have scorel() > score(s) andG is not a local
optimum. For each setting, 30 data-generating distributions were se
lected with random parameters and random structure. DAG
structures were drawn randomly with at most 5 parents per
variable. Chordal structures were obtained by first drawing

DAG structures with at most 3 parents and then chordal-

To conclude the proof, let us show by contradiction that
there is no chordal grapH such thatl(G) ¢ I(H) c I.
Sincel (G) ¢ I(H), there existK in the inclusion bound-

Ery Ofd.G such tdh_atI(G) ¢ 1K) < | (H). Alzo, vr\1/e izing them with a greedy minimum fill-in algorithm. For
ave dimg) < |m(G()j.G By c?nsllstelncy,t_we thus have o4ch distribution, 30 independent datasets &f 10°, 10*
scoreK) > score() andG is not a local optimum. . and, in the case of 20 variables,*16bservations were

generated. For each dataset, we learned a chordal struc-
Note that Proposition 2 applies to all local maxima. Theture with the greedy search algorithm using the inclusion
greedy search may thus start at any chordal graph and wiloundary. Also, we learned a DAG structure with the
return an inclusion-optimal chordal graph under the hy-greedy search algorithm using the neighborhood obtained
potheses of the proposition. by legal arrow additions, removals and reversals. In both
case, the BDeu scoring criterion with an equivalent sam-
ple size of 1 was used and the search was started at the
empty structure. To measure KL divergences with the data-
generating distribution, we estimated the parametersef th
Although we have not been able to prove it, we suspect thakarned chordal structure, of the learned DAG structure
Proposition 2 still holds when the target dependency modeind of the data-generating structure with the Bayesian ap-
I can no longer be represented perfectly by an undirectegroach corresponding to our choice of score. Then, for each
graph, but rather by a DAG. dataset, the following quantities were measured:

3.2 Extension to other graphical dependency models

However, as illustrated by the graphs given in Figure 2, the ) o )
proposition no longer holds whehnis encoded by a DAG * the dimension, i.e. number of independent parameters,
structure with hidden variables. of the data-generating structure,

o the dimension of the learned chordal model,
h

/ \ ¢ the dimension of the learned DAG structure,
a b a b ¢ the KL divergence from the distribution with learned
T T ‘ ‘ parameters and learned chordal structure to the data-
d—-—=c d——c generating distribution,
(a) (b) o the KL divergence from the distribution with learned

parameters and learned DAG structure to the data-

Figure 2: Suppose thais the set of independence relations generating distribution,

over the variableg, b, ¢, d} encoded by the DAG given in
(). Such a graph does not encode the relatian bjc, ¢ the KL divergence from the distribution with learned
while the chordal graph given in (b) does encode it, and parameters and data-generating structure to the data-
is thus not inclusion-optimal fok. The neighbors of the generating distribution,

chordal graph are obtained by addiag- ¢, addingb —

d, removinga - d, removingb - ¢, or removingc - d.

Using the local consistency property, one can see that each
operation decreases the score. The chordal graph is thus a
local maximum.

e in the case of chordal data-generating structure,
the number of false positive lines, i.e the lines in
the learned chordal structure but not in the data-
generating structure, and the number of false negative
lines, i.e. the lines in the data-generating structure but
not the learned chordal structure.



The KL divergences between a learned distributoand i - : o
a target data-generating distributignvere estimated ona | S1oer 1T
dataseD of 10* observations drawn independently of the 1 [ ' ]
observations used for learning, according to the following : 1T : ] - :
equation: Tweb s et i

Lili

o
[]

N ]
- 1t IR
KLl p)=|D|‘1iln(E2§§:;)’ ) % | ;L

i=1 0 C

@N=1¢ (@[®N=106 ()N=10" (d)N=10°

whereX! denotes théth observation of the test datast
. — . Figure 3: Estimated KL divergences to a data-generating
_?ﬁé p::rf Of;rl].?a;.esell”tzzﬁa?'}/;n dlgtz-lgzaifattpnﬁgt:rni 12'distributiong with chordal structure over 20 binary ran-

y qualitatively sim 9 ng ! dom variables. For each sample size, the leftmost plot mea-

tions with chordal or DAG structures. Depending on theS%Jres the divergendel (g || p) from the distributiorp with

datasets sizes, one can distinguish three phases. A flr%arned chordal structure and parameters, the middle plot
phase where the learned chordal model exhibits a lower Kl?neasures the divergenkd (g || o) from the distributiory

dlverge_n_ce and a lower d|mens_|on than the othe_r mOd.els\;Nith learned DAG structure and parameters, and the right-
A transition phase where the divergences and dimensio ost plot measuresL(g || r) from the distributiorr with

have close valqes. A ﬁnal phase wherg the Igarned Chordﬁ'{;\ta—generating structure and learned parameters.
model has a higher dimension and higher divergence, al-

though the divergence tends to decrease. The first phase is
expected: the model with correct structure overfits the,data, - SR - 3 - r - 1
while the learned model benefits from the use of a Bayesiann & | | ™ 1 Q Tl o
scoring criterion that favors small structures. As the num- : 1F 1 g 10 : ]

800 - -

ber of observations increases and we enter the third pha§5°e§ ! =
the model with correct structure dominates. However, the; g

: §

| 200 |- B 600
model with learned chordal structure seems able to ada’ﬁE i | 1wl 1
and the diference in divergence keeps decreasing, as dft 3 wp e i é é

expected consequence of the inclusion-optimality prgpert =

s0F

0 0

Consider the case of data-generating distributions with (a)N=1¢® (b)N=10* (c)N =10 (d)N =10
chordal structures. As expected again, the number of false
positive and false negative lines tends to decrease. Alsd;igure 4: Dimensions with 20 binary random variables and
note that the number of false positives is in general mucta data-generating distribution with chordal structurer Fo
lower than the number of false negatives. This is probablygach sample size, the leftmost plot measures the dimen-
due to the fact that the Bayesian score is naturally conserv&ion d(p) of the learned chordal structure, the middle plot
tive and gives a high score only to independence relationgieasures the dimensidig) of the learned DAG structure,
that are well supported by the data. and the rightmost plot measures the dimension of the data-
generating structure(g).

5 CONCLUSION

50 — —

In this paper, we discussed the optimality properties of a 1 o 1 o *
greedy hill-climbing algorithm using the inclusion bound- s 1w T ]
ary neighborhood to learn the structure of a chordal graph- I 1t | T <
ical model. We proved that such an algorithm will asymp- [ 1wl 1ok e e

totically return an inclusion-optimal chordal structuiréhie I |l |
scoring criterion is consistent and locally consistentéed , ] . R B

0 ¢ - r L

dependency model of the data-generating distribution can | i B ]
be represented exactly by an undirected graph. Our exper- % ] é e e
imental results show the practical interest of this aldponit °C 1 °C R e

in the context of problems where the number of variables  (@N=10 (B)N=10° (c)N=10" (d)N =10

is large and their dependency structure ifisiently com- ) N o
plex, be it UG-faithful or DAG-faithful. Figure 5: Number of false positive and false negative lines

) ) with 20 binary random variables and a data-generating dis-
Further theoretical work should address the extension ofipution with chordal structure

the above optimality property with respect to more general
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ers for their very useful comments about our work. ’

2. decomposition
References XLYUWZel=X1LYZelAXLWZEeI,

[1] V. Auvray and L. Wehenkel. On the construction 3. intersection
of the inclusion boundary ne_lghbourhood for Markov X LYIZUWelAX LWZUYel
equivalent classes of Bayesian network structures. In
A. Darwiche and N. Friedman, editorBroceedings = XLYUWZel,



4. strong union

XLYZel=>XLYZUWEel,

5. transitivity

XLYZel>XL1ylZelvyLYZel,

where W, X, Y, and Z are disjoints subsets of vertices and
v is a singleton vertex.

Lemmad4. Let | be a graph-isomorph dependency model.
If Ao, ..., A, (n> 3) are sets of vertices such thag A {x},

A ={y,and A1 L AJA elfori=1,...,n-1, then
we have

XLAelv---VXLAL1€el VXLYA1€l.

Proor. By transitivity and symmetry, we have
Al LAsIA el = XL AIA el vX L AgA el
By intersection, we have
XLAA el AXLAAIel =2 XLAUAEL
Hence, we have
XLAAUA el VXLAA .

Repeating these steps, we obtain

XLAUAElVXLAUAsEl V...
VXLA2UAL1el VX LYA-L el

By decomposition, we thus have

XLAelv---VXLA1€l VXLYA1€l. a



