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Abstract

We introduce Clique Matrices as an alter-
native representation of undirected graphs,
being a generalisation of the incidence ma-
trix representation. Here we use clique ma-
trices to decompose a graph into a set of
possibly overlapping clusters, defined as well-
connected subsets of vertices. The decom-
position is based on a statistical description
which encourages clusters to be well con-
nected and few in number. Inference is car-
ried out using a variational approximation.
Clique matrices also play a natural role in pa-
rameterising positive definite matrices under
zero constraints on elements of the matrix.
We show that clique matrices can parame-
terise all positive definite matrices restricted
according to a decomposable graph and form
a structured Factor Analysis approximation
in the non-decomposable case.

1 Introduction

Undirected graphs may be used to represent connec-
tivity or adjacency structures in data. For example,
in Collaborative Filtering, the nodes(vertices) in the
graph may represent products, and a link(edge) be-
tween nodes i and j could be used to indicate that
customers who by product i frequently also buy prod-
uct j. This paper concerns decomposing the graph
into well-connected clusters of nodes1. In Fig.1a prod-
uct 3 is typically bought along with products 1 and 2,
or with products 4 and 5, though these two product-
groups are otherwise disjoint. A formal specifica-
tion of the problem of finding a minimum number of
well-connected subsets is to phrase this as MIN CLIQUE
COVER[9, 17]. However, in some applications, provided

1Not to be confused with graph-partitioning.
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Figure 1: Two simple undirected graphs

that only a small number of links in an ‘almost clique’
are missing, this may be considered a sufficiently well-
connected group of nodes to form a cluster. We will
therefore develop a statistical technique to reveal clus-
ters of nodes and to identify the smallest number of
such clusters.

Our main contribution is the introduction of the clique
matrix formalism, a generalisation of the incidence
matrix. We apply this to the clustering problem, in ad-
dition to demonstrating an application in constrained
covariance parameterisation.

2 Clique Decomposition

The symmetric adjacency matrix has elements Aij ∈
{0, 1}, with a 1 indicating a link between nodes i and
j. For the graph in Fig.1b, the adjacency matrix is

A =

 1 1 1 0
1 1 1 1
1 1 1 1
0 1 1 1

 (1)

where we include self connections on the diagonal.
Given a graph G with adjacency matrix A, our aim
is to find a ‘simpler’ description of A that reveals un-
derlying cluster structure.

2.1 Two-Clique Decomposition

Given the undirected graph in Fig.1b, the incidence
matrix Zinc is an alternative description of the adja-
cency structure[6]. Given the V nodes in the graph,



we construct Zinc as follows: For each link ij in the
graph, form a column of the matrix Zinc with zero en-
tries except for a 1 in the ith and jth row. The column
ordering is arbitrary. For example, on the left

Zinc=

(
1 1 0 0 0
1 0 1 1 0
0 1 1 0 1
0 0 0 1 1

)
, ZincZ

T
inc=

(
2 1 1 0
1 3 1 1
1 1 3 1
0 1 1 2

)
is an incidence matrix for the graph in Fig.1b. Taking
the outer-product with itself, on the right, we see that2

A = H
(
ZincZ

T
inc

)
(2)

where [H(M)]ij = 1 if Mij > 0 and is 0 otherwise (i.e.
H(·) is the element-wise Heaviside step function).

A useful viewpoint of the incidence matrix is that it
identifies two-cliques in the graph (here we are using
the term ‘clique’ in the non-maximal sense). There
are five 2-cliques in Fig.1b, and each column of Zinc
specifies which elements are in each 2-clique.

2.2 Clique matrices

The incidence matrix can be generalised to describe
larger cliques. Consider the following matrix as a de-
composition for Fig.1b, and its outer-product:

Z =

 1 0
1 1
1 1
0 1

, ZZT =

 1 1 1 0
1 2 2 1
1 2 2 1
0 1 1 1

 (3)

The interpretation is that Z represents a decomposi-
tion into two 3-cliques. As in the incidence matrix,
each column represents a clique, and the rows con-
taining a ‘1’ express which elements are in the clique
defined by that column. Both Zinc and Z satisfy

A = H
(
ZZT

)
= H

(
ZincZ

T
inc

)
(4)

for Fig.1b. For clustering, Z is to be preferred against
the incidence decomposition, since Z decomposes the
graph into a smaller number of larger cliques. Indeed,
Z solves MIN CLIQUE COVER for Fig.1b.
Definition 1 (Clique Matrix). Given an adjacency
matrix [A]ij , i, j = 1, . . . , V (Aii = 1), a clique matrix
Z has elements Zi,c ∈ {0, 1} , i = 1, . . . , V, c = 1, . . . C
such that A = H(ZZT).

A Clique Matrix Z ∈ {0, 1}V×C is minimal for A if
there exists no other clique matrix for Z ∈ {0, 1}V×C

′

with a smaller number of columns C ′ < C.

That each column of Z expresses a clique is clear from[
ZZT

]
ij

=
∑
k

ZikZjk (5)

2(·)T represents matrix transpose.

For each k, the nodes i and j corresponding to 1′s
in the kth column of Z give a product ZikZjk = 1.
Since this happens for every non-zero i and j pair in
the kth column, all of the pair connections give rise
to a non-zero product. In other words, all the nodes
corresponding to non-zero elements of the kth column
are connected to each other, thus forming a clique.

The interpretation of the elements of ZZT is that
diagonal elements

[
ZZT

]
ii

express the number of
cliques/columns that vertex i occurs in. Off-
diagonal elements

[
ZZT

]
ij

contain the number of
cliques/columns that vertices i and j jointly inhabit.

Whilst finding a clique decomposition Z is easy (use
the incidence matrix for example), finding a clique de-
composition with the minimal number of columns, i.e.
solving MIN CLIQUE COVER, is NP-Hard[9]. One ap-
proach would be to use a recursive procedure that
searches for maximal cliques in the graph or related
techniques based on finding large densely connected
subgraphs[17]. The route that we take here is different
and motivated by the idea that perfect clique decom-
position is not necessarily desirable if the aim is only
to find well-connected clusters in G.

3 Statistical Clique Decompositions

To find ‘well-connected’ clusters, we relax the con-
straint that the decomposition is in the form of cliques
in the original graph. Our approach is to view the ab-
sence of links as statistical fluctuations away from a
perfect clique.

Given a V × C matrix Z, we desire that the higher
the overlap between rows3 zi and zj is, the greater the
probability of a link between i and j. This may be
achieved using, for example,

p(i ∼ j|Z) = σ
(
ziz

T
j

)
(6)

where we define

σ(x) ≡
(

1 + eβ(0.5−x)
)−1

(7)

and β controls the steepness of the function. The 0.5
shift in Eq. (7) ensures that σ approximates the step-
function, since the argument of σ is an integer. Under
Eq. (6), if zi and zj have at least one ‘1’ in the same
position, zizT

j − 0.5 > 0 and p(i ∼ j) is high. Absent
links contribute p(i 6∼ j|Z) = 1 − p(i ∼ j|Z). β con-
trols how strictly σ(ZZT) matches A; for large β, very
little flexibility is allowed and only cliques will be iden-
tified. For small β, subsets that would be cliques if it
were not for a small number of missing links, are clus-
tered together. The setting of β is user and problem
dependent.

3We use lower indices zi to denote the the ith row of Z.



Given Z, and assuming each element of the adjacency
matrix is sampled independently from the generating
process, the joint probability of observing A is (ne-
glecting its diagonal elements),

p(A|Z) =
∏
i∼j

σ
(
ziz

T
j

)∏
i 6∼j

(
1− σ

(
ziz

T
j

))

The ultimate quantity of interest is the posterior,

p(Z|A) ∝ p(A|Z)p(Z) (8)

where p(Z) is a prior over clique matrices. Later we
place a prior on Z to encourage the smallest number of
clusters to be identified (and hence for the size of the
clusters to be large). However, since finding such Z,
even in the case of a fixed desired number of clusters,
C, is hard, we develop an algorithm to approximately
discover clique matrices, before discussing non-uniform
priors p(Z).

4 Finding Z for a fixed cluster number

Formally, our task is to find the Most likely A Pos-
teriori (MAP) solution arg maxZ p(A|Z) where Z is
a V × C binary matrix. A variety of deterministic
and randomised methods could be brought to bear on
this problem. The approach we take here is to ap-
proximate the marginal posterior p(zij |A) and then
to assign each zij to that state which maximises this
posterior marginal (MPM). This has the advantage of
being closely related to marginal likelihood computa-
tions, which will prove useful later for addressing the
issue of finding the number of clusters. Here we de-
velop a straightforward variational approach based on
a simple factorised approximation to the posterior.

4.1 Mean Field Approximation

Given the intractable p(Z|A) ∝ p(A|Z), a fully fac-
torised mean-field approximation (see, e.g. [20])

q(Z) =
V∏
i=1

C∏
c=1

q(zi,c) (9)

can be found by minimising the KL divergence

KL(q, p) = 〈log q〉q − 〈log p〉q (10)

where 〈·〉q represents expectation with respect to
q. The first ‘entropic’ term simply decomposes into∑
i,c 〈log q(zi,c)〉. The second, ‘energy’ term, up to a

constant is

∑
i∼j

〈
log σ

(∑
c

ziczj,c

)〉
q

+
∑
i 6∼j

〈
log

(
1− σ

(∑
c

ziczj,c

))〉
q

(11)

The first term of Eq. (11) encourages graph links to
be preserved under the decomposition, and is given by

∑
i∼j

〈
f

(
C∑
d=1

zidzjd

)〉
∏C
e=1 q(zie)q(zje)

(12)

where f(x) ≡ log σ(x). Minimising Eq. (10) can be
achieved by differentiation. Differentiating the energy
contribution from the present links, Eq. (12) with re-
spect to q(zkc) we identify two cases: when i = k and
when j = k. Due to symmetry, the derivative is

2
∑
k∼j

〈
f

(∑
d

zkdzjd

)〉
∏
e q(zje)

∏
g 6=c q(zkg)

≡ Ψ(Q)

(13)

Similarly, the derivative of the absent-links energy is

2
∑
k 6∼j

〈
f ′

(∑
d

zkdzjd

)〉
∏
e q(zje)

∏
g 6=c q(zkg)

≡ Ψ′(Q)

(14)

where f ′(x) ≡ log (1− σ(x)). Equating the derivative
of Eq. (10) to zero, a fixed point condition for each
qk,c k = 1, . . . , V ,c = 1, . . . , C is

q(zkc) ∝ eΨ(Q)+Ψ′(Q) (15)

A difficulty here is that neither Ψ(Q) nor Ψ′(Q) are
easy to compute, due to the non-linearities. A simple
Gaussian Field approximation[3] assumes

∑
d zkdzjd is

Gaussian distributed for a fixed state of zi,c. In
this case, we need to find the mean and variance of∑
d zkdzjd. Writing θab ≡ q (zab = 1), and using the

independence of q, the mean is given by

µkj = zkcθjc +
∑
d 6=c

θkdθjd

A similar expression is easily obtained for the variance
σ2
kj . The Gaussian Field approximation then becomes,

q(zkc) ∝ e
2〈∑j∼k f(x)+

∑
j 6∼k f

′(x)〉N(x|µkj,σ2
kj) (16)

where the one dimensional averages are performed nu-
merically. By evaluating Eq. (16) for the two states
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Figure 2: (a) Adjacency matrix for the DIMACS
brock200-2 MAX-CLIQUE challenge. Black denotes the
presence of a link. (b) Clique Matrix. (c) Log2-
histogram of clique occurrence (+1); correctly solves
MAX-CLIQUE (12) as well as identifying all remaining
clusters.

of zkc (and noting that the mean and variance of the
field depends on these states), the approximate update
for θkc is obtained. A simpler alternative is to assume
that the variance of the field is zero, and approximate
the averages by evaluating the functions at the mean
of the field. We found that this latter procedure often
gives satisfactory performance and therefore used this
simpler and faster approach in the experiments.

One epoch corresponds to updating all the θkc, k =
1, . . . , V, c = 1 . . . , C. During each epoch the order in
which the parameters are updated is chosen randomly.

5 Finding the number of clusters

To bias the contributions to A to occur from a small
number of columns of Z, we first reparameterize Z as

Z =
(
α1z

1, . . . , αCmaxz
Cmax

)
(17)

where αc ∈ {0, 1} play the role of indicators and zc is
the vector of column c of Z. Cmax is an assumed max-
imal number of clusters we desire to find. Ideally, we
would like to find a likely solution Z with a low num-
ber of indicators α1, . . . , αCmax in state 1. To achieve
this we define a prior on α4,

p(α|ν) =
∏
c

νI[αc=1] (1− ν)I[αc=0] (18)

To encourage a small number of α′s to be used, we use
a Beta prior p(ν). This gives rise to a Beta-Bernoulli
distribution

p(α) =
∫
ν

p(α|ν)p(ν) =
B(a+N, b+ Cmax −N)

B(a, b)
(19)

whereB(a, b) is the normalisation constant of the beta-
distribution. N ≡

∑Cmax
c=1 I [αc = 1], namely the num-

ber of indicators in state 1. To encourage strongly
4I [x = y] is 1 if x = y and 0 otherwise.
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Figure 3: (a) Adjacency matrix of 105 Political Books
(black=1). (b) Clique matrix: 521 non-zero entries.
(c) Adjacency reconstruction using an Approximate
Clique Matrix with 10 cliques – see also Fig. 4.

that a small number of components should be active,
we set a = 1, b = 3. Through Eq. (17), the prior on α
thus induces a prior on Z. The resulting distribution
p(Z,α|A) ∝ p(Z|α)p(α) is formally intractable.

5.1 Variational Bayes

To deal with the intractable joint posterior we adopt a
similar strategy to the fixed C case and employ a vari-
ational procedure to seek a factorised approximation
p(α,Z|A) ≈ q(α)q(Z) based on minimising

KL(q(α)q(Z), p(α,Z|A)) (20)

q(Z) updates

A fixed point condition for the optimum of Eq. (20) is

q(Z) ∝ e〈log p(A|Z,α)〉q(α) ≈ elog p(A|Z,〈α〉) (21)

The average over q(α) in Eq. (21) in the first expres-
sion is complex to carry out and we simply approx-
imate at the average value of the distribution. This
reduces the problem to one similar to that of inferring
Z for a fixed C, as in Section 4.1. We therefore make
the same assumption that q(Z) factorizes according to
Eq. (9). This gives updates of the form Eq. (16) where
α has been set to its mean value.

q(α) updates

A fixed point condition for the optimum of Eq. (20) is

q(α) ∝ p(α)e〈log p(A|Z,α)〉q(Z) ,

Additionally we assume that q(α) =
∏
c q(αc). The

resulting update

q(αc) ∝ e
〈log p(A|Z,α)〉q(Z)+〈log p(α)〉∏

d 6=c q(αd)

is difficult to compute and we take the naive approach
of replacing averages by evaluation at the mean

q(αc) ∝ p(αc,
〈
α\c
〉
)p(A| 〈z〉 , αc,

〈
α\c
〉
) (22)
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Figure 4: Political Books. Plotted is the 105 × 10 matrix Z, found by approximating the 105 × 105 adjacency
co-bought matrix, where a dot indicates q(zi,c) > 0.5. By inspection, cliques 5,6,7,8,9 largely correspond to
‘conservative’ books. Green indicates ‘conservative’ books, yellow ‘neutral’ and red ‘liberal’ books.

Since αc is binary, we can easily find Eq. (22) by
evaluating at its two states.

Formally, the prior p(α) requires α ∈ {0, 1}C . How-
ever, in the above approximation, the mean α is non-
binary. To deal with this, we replace

∑
c I [αc = 1] by∑

c 〈αc〉 and
∑
c I [αc = 0] by Cmax −

∑
c 〈αc〉. Since

the expressions are valid for non-integer sums, this ap-
proximate procedure remains well defined.

The algorithm then updates q(α) and q(Z) until con-
vergence. The effect is that, beginning with Cmax clus-
ters, under the updating, the posterior assigns α’s not
required to state zero.

6 Demonstrations

DIMACS MAX-CLIQUE

Our method aims to find a complete characterisation
of an undirected graph into constituent clusters. By
setting β suitably high (β = 10 in the experiments),
we impose that perfect cliques constitute clusters. In
Fig.2a we show the adjacency matrix for a 200 ver-
tex graph, taken from the DIMACS 1996 MAX CLIQUE
challenge [4]. This graph was constructed to hide the
largest clique in the graph and make it difficult to
find based on the recursive algorithms of the time.
Whilst more recent algorithms have been constructed
that readily find the largest clique in this graph [13],
this problem serves as an interesting baseline to see if
our algorithm, in searching for a complete decompo-
sition, also solves MAX-CLIQUE for this graph. Run-
ning our Mean-Field algorithm with Cmax = 2000
results in a clique-decomposition, Fig.2b, containing
1102 cliques5. In Fig.2c we plot a log histogram of
the cluster sizes, indicating that there is only a sin-
gle largest clique of size 12. The largest clique in the

5This takes roughly 30s using a 1Ghz machine.

graph is indeed 12[4].

Political Books Clustering

The data consists of 105 books on US politics sold
by the online bookseller Amazon. Edges in graph G,
Fig.3a, represent frequent co-purchasing of books by
the same buyers, as indicated by the ‘customers who
bought this book also bought these other books’ fea-
ture on Amazon[10]. Additionally, books are labelled
‘liberal’, ‘neutral’, or ‘conservative’ according to the
judgement of a politically astute reader6. Running
our algorithm with an initial Cmax = 200 cliques, the
posterior contains 142 cliques7, Fig.3b, giving a per-
fect reconstruction of the adjacency A. For compari-
son, the incidence matrix has 441 2-cliques. To cluster
the data more aggressively, we fix C = 10 and run our
algorithm. As expected, this results only in an approx-
imate clique decomposition, A ≈ H(ZZT), as plotted
in Fig.3c. The resulting 105 × 10 approximate clique
matrix is plotted in Fig. 4 and demonstrates how in-
dividual books are present in more than one cluster.
Interestingly, the clusters found only on the basis of
the adjacency matrix have some correspondence with
the ascribed political leanings of each book.

7 Latent Parameterisations for
Zero-Constrained Positive Matrices

We may use an undirected graph G to represent zero
constraints on a positive definite matrix K. In par-
ticular, missing edges in G with adjacency Aij = 0,
correspond to zero entries Kij = 08. An example ap-

6See www-personal.umich.edu/∼mejn/netdata/.
7This take roughly 10s on a 1GHz machine.
8In a Gaussian context, missing edges in G typically cor-

respond to missing edges in the inverse covariance. Much
of our initial discussion relates only to constraining positive



plication would be to fit a Gaussian to data under the
constraint that specified elements of the covariance are
zero. In such cases, it is useful to have a parameterisa-
tion of the allowed space of covariances. We denote the
space of positive definite matrices constrained through
G by M+(G). Our approach is based on the simple ob-
servation that by replacing non-zero entries of a clique
matrix Z with arbitrary real values, Z → Z∗, the ma-
trix Z∗ (Z∗)T is positive (semi) definite. An immediate
question is the richness of such a parameterisation –
can all of M+(G) be reached in this way?

7.1 Decomposable Case

For G decomposable, parameterising M+(G) is
straightforward[14, 12, 19]. For example one may ap-
peal to the following:

Theorem 1 (Paulsen et al., 1989). The following are
equivalent for an undirected graph G: (i) the graph
is decomposable; (ii) there exists a permutation of the
vertices such that with respect to this renumbering ev-
ery K ∈M+(G) factors as K = TTT with T ∈M(G)
and T upper triangular.

For decomposable G, provided the vertices are perfect
elimination ordered, the Cholesky factor has the same
structure as G[19]. In other words, provided the ver-
tices are ordered correctly, the lower triangular part of
the adjacency matrix is a clique matrix and further-
more parameterises all of M+(G). All positive defi-
nite matrices under decomposable zero-constraints can
therefore be parameterised by some clique matrix.

Definition 2 (Expanded Clique Matrix). Given a
Clique Matrix Z ∈ {0, 1}V×C , the Expanded Clique
matrix consists of Z appended with columns corre-
sponding to all unique sub-columns of Z. A subcol-
umn of zc is defined by replacing one or more entries
containing zci = 1 by zci = 0.

The expanded Clique Matrix corresponding to the
minimal clique matrix derived from Fig.1b is 1 0

1 1
1 1
0 1

→
 1 0 1 1 0 0 0 1 0 0 0

1 1 1 0 1 1 0 0 1 0 0
1 1 0 1 1 0 1 0 0 1 0
0 1 0 0 0 1 1 0 0 0 1


(23)

In the above, the expansion is ordered such that all
3-cliques are enumerated, then all 2-cliques and finally
all 1-cliques.

Starting from a minimal clique matrix for a decom-
posable graph, the expansion of this minimal clique
matrix must contain all the columns of the Cholesky

definite matrices and is independent of its application.
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Figure 5: (a) Non-decomposable graph. (b) Correla-
tions can be induced via latent variables.(c) Histogram
of the rms errors in approximating covariances accord-
ing to graph (a) with an expanded incidence matrix.

factor TT. For the example for G in Fig.1b, the lower
triangular Cholesky factor is9 ∗ 0 0 0

∗ ∗ 0 0
∗ ∗ ∗ 0
0 ∗ ∗ ∗


which corresponds to columns 1, 2, 7, 11 of the ex-
panded clique matrix, Eq. (23). Clearly, in
general, the expanded clique matrix is an over-
parameterisation of M+(G) for decomposable G.

7.2 Non-decomposable Case

For G non-decomposable, no explicit parameterisation
is generally possible and techniques based on Positive
Definite matrix completion are required[12, 18, 5, 14].
For the specific example in Fig.5a, the lower Cholesky
factor has the form

c11 0 0 0
c21 c22 0 0
c31 c32 c33 0
0 c42 c43 c44

 , with c21c31 + c22c32 = 0

(24)

which can be found explicitly in this case. However,
more generally, for non-decomposable graphs, one can-
not identify those elements of the Cholesky factor
which may be set to zero, with the remainder deter-
mined by the positivity requirement[14, 19].

An alternative is to use latent variables to explicitly
parameterise M+(G). One may use Factor Analysis[1]

x = Fε, ε ∼ N (0, I) ⇒ Σ = FFT

where the factor matrix F is suitably structured in
order to force zeros in specific elements of Σ10.

9In general, for a matrix with elements dij ∈ {0, 1}, we
use D∗ to denote a matrix with d∗ij = 0 if dij = 0, and
arbitrary values elsewhere.

10By writing F = [F̃ |D] where D is diagonal, this is
explicitly Factor Analysis. Unlike standard FA, the matrix
F̃ will typically be non-square and sparse.



A special case of the above is to use a latent vari-
able to induce correlation between x1 and x2 via a
local Directed Graph element x1 ← ε12 → x2. For
each edge in G, a corresponding latent ε can thus be
introduced to form correlations between all pairs of
variables, without introducing correlations on missing
edges in G[8]. By taking F = [Z∗inc|I∗], it is clear that
this latent variable approach (see, for example, [16]) is
reproduced and is a special case of restricting Cliques
to Incidence matrices.

To show that not all of M+(G) can be reached by
clique matrices, consider Fig.5a. In this particularly
simple case, the minimal clique matrix is the same as
the incidence matrix, and the expanded clique matrix
is simply the incidence matrix with the identity ma-
trix appended. In this case, therefore, the expanded
clique matrix contains columns with only two non-zero
entries. However, the Cholesky factor Eq. (24) con-
tains columns with 3 non-zero entries, so that there is
no immediate assignment of [Z∗inc|I∗] which will match
the Cholesky factor.

For the non-decomposable graph

1

2

3

45

the minimal
clique matrix contains 3-cliques so that its expansion
contains columns that an expansion based on an in-
cidence matrix would not. In this case our approxi-
mate parameterisation is therefore richer than would
be obtained from simply introducing a latent auxiliary
variable for each edge of the graph[8, 15].

7.3 Maximum Likelihood Solution

In fitting a Gaussian N (0,Σ) to zero mean data, with
sample covariance S, the ML solution minimises

κ (Σ) ≡ Tr
(
Σ−1S

)
+ log det Σ (25)

Our interest is to minimize κ subject to zero con-
straints on Σ specified through G, with σij = 0 if
Aij = 0. For G decomposable, the problem is es-
sentially trivial, since M+(G) is easily characterized
via a structured Cholesky factor, Σ ≡ CT(θ)C(θ) see
for example [14], for which one can parameterise Eq.
(25) using κ(θ) and perform unconstrained minimisa-
tion over the free parameters θ of the Cholesky factor.

In the non-decomposable G case, no explicit parame-
terisation of M+(G) is feasible. A common approach
in this case is to recognise that solutions to this sat-
isfy

[
Σ−1
ij

]
=
[
Σ−1SΣ−1

]
ij

for Aij = 1 and σij =
otherwise[2] and define iterative procedures to solve
this equation[7]. Alternatively, Positive Definite Com-
pletion methods may be used to parameterise M+(G).
Our approach uses the parameterisation Σ = Z∗ (Z∗)T

where Z should be chosen as large as can be com-
putationally afforded. Z can be determined by run-
ning the algorithm of Section 4.111. Although for
non-decomposable G, not all of M+(G) is guaranteed
reachable through this parameterisation, one may ex-
pect that numerically this may be sufficiently close.
A benefit of this approach is that one may then min-
imize Eq. (25) with respect to the free parameters
of Z∗ using any standard optimisation technique, and
convergence is guaranteed. Since our parameterisa-
tion has a natural latent variable representation (it is a
form of structured Factor Analysis), EM and Bayesian
techniques can also be used in this case. A numeri-
cal example is plotted in Fig.5c. We take the 4 × 8
expanded clique matrix corresponding to Fig.5a and
minimise Eq. (25) with respect to the non-zero en-
tries of the clique matrix12. Each sample matrix S is
generated randomly by drawing values of the Cholesky
factor Eq. (24) independently from a zero mean unit
variance Gaussian. In Fig.5c we plot the root mean
square error between the learned Σ and sample covari-
ance S, averaged over all non-zero components of Σ.
The histogram of the error, computed from 1000 simu-
lations shows that, whilst a few have appreciable error,
the vast majority of cases are numerically well approx-
imated by the expanded clique matrix technique, even
though the graph G is non-decomposable.

8 Summary

We introduced a graph matrix decomposition based on
an extension of the incidence matrix concept. Finding
the clique decomposition corresponding to the small-
est number of cliques is a hard problem, and we con-
sidered a relaxed version of the problem to find an ap-
proximate clique decomposition based on a variational
algorithm. The approach can be seen as a form of bi-
nary factorisation of the adjacency matrix13. Clear
extensions of this work would be to consider alter-
native approximate inference schemes, including sam-
pling methods, for which ‘infinite’ extensions are also
available[11]. An application of clique matrices is to

11A heuristic is to initialise Z for the variational algo-
rithm based on the lower Cholesky factor of a spanning
decomposable graph, augmented with missing two cliques.
Once the algorithm converges to an approximate minimal
clique matrix, its expansion is used to form the parameter-
isation Z∗.

12We chose this simple case since the exact parameter-
isation of all M+(G) is easy to write down. Whilst here
the expanded clique and incidence matrices are equivalent,
the reader should bear in mind that in more complex situ-
ations, the expansion based on a clique matrix provides a
richer parameterisation than that of the incidence matrix.

13A parallel development to our own work is [11], which
considers binary factorisation of more general matrices.
Thanks to Zoubin Ghahramani for pointing me to this.



parameterising positive definite matrices under speci-
fied zero constraints. We showed that constraints cor-
responding to decomposable graphs trivially admit a
clique matrix representation, and how our structured
Factor Analysis technique can be used to approximate
the non-decomposable case. This is a richer param-
eterisation than those latent models which consider
only pairwise correlations in forming the latent model.
Indeed, the so-called ancillary variable technique is a
special case of using incidence, as opposed to clique
matrices. The latent variable formulation additionally
offers an alternative to recent works on conjugate pri-
ors for constrained covariances in Bayesian learning.

C-code for clique matrices is available from the author.
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