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Abstract

Assume that cause-effect relationships be-
tween variables can be described as a directed
acyclic graph and the corresponding linear
structural equation modelld We consider the
identification problem of total effects in the
presence of latent variables and selection bias
between a treatment variable and a response
variable. Pearl and his colleagues provided
the back door criterion, the front door cri-
terion (Pearl, 2000) and the conditional in-
strumental variable method (Brito and Pearl,
2002) as identifiability criteria for total ef-
fects in the presence of latent variables, but
not in the presence of selection bias. In or-
der to solve this problem, we propose new
graphical identifiability criteria for total ef-
fects based on the identifiable factor models.
The results of this paper are useful to iden-
tify total effects in observational studies and
provide a new viewpoint to the identification
conditions of factor models.

1 INTRODUCTION

The evaluation of total effects from observational stud-
ies is one of the central aims in many fields of prac-
tical science. In observational studies, there may ex-
ist latent variables, for example, a variable measured
with error, or an unmeasured confounder. On the
other hand, observational data may suffer from selec-
tion bias, if a sample is selected according to some
selection criteria. The existence of latent variables
and selection bias hinder the evaluation of total effects
from observational data. Many researchers have pro-
vided approaches to deal with latent variables in ob-
servational studies (Brito and Pearl, 2002; Pearl, 2000;
Stanghellini, 2004; Stanghellini and Wermuth, 2005;
Tian, 2004). Recently, selection bias has attracted at-
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tention from epidemiologists (Greenland, 2003; Her-
nan et al., 2004), AI researchers (Cooper, 2000) and
statisticians (Stanghellini and Wermuth, 2005; Kuroki
and Cai, 2006).

In observational studies, it is not rare that both la-
tent variables and selection bias exist in one dataset.
However, when we examine current results on latent
variables and selection bias, we find that most of them
deal with either latent variables or selection bias sepa-
rately, only a few of them take into account these two
situations at the same time. In the presence of latent
common causes between a treatment and a response,
Pearl and his colleagues provided the back door crite-
rion, the front door criterion (Pearl, 2000) and the con-
ditional instrumental variable (IV) method (Brito and
Pearl, 2002) as identifiability criteria for total effects
in the framework of linear structural equation models.
In addition, in the framework of nonparametric struc-
tural equation models, Shpitser and Pearl (2006) and
Huang and Valtorta (2006) solved the identification
problems of causal effects and provided the complete
algorithms to derive the causal effects in the presence
of latent variables. In general, these criteria are based
on the idea that some observed variables which have no
direct association with the latent common causes are
used to evaluate the total effects. However, in many
practical studies, such latent variables may have an ef-
fect on some important observed variables to be used
to identify total effects. Under such situations, it is dif-
ficult to apply these identification criteria to evaluate
the total effects.

On the other hand, when both confounding bias and
selection bias may be at work, Spirtes et al. (1999)
described the FCI algorithm (Spirtes et al., 2000) as
a method to test whether there is a causal path from
one variable to another. In addition, Richardson and
Spirtes (2002) introduced ancestral graph models as a
graphical model in the presence of latent variables and
selection bias, and clarified some properties regarding
the ancestral graph models. However, these studies fo-



cused on the specification problem of causal structure,
but not on the identification problem of total effects.

In this paper, we assume that cause-effect relation-
ships between variables can be described as a directed
acyclic graph and the corresponding linear structural
equation modeld Then, we consider the problem of
identifying total effects from observational studies with
latent variables and selection bias between a treatment
variable and a response variable[d Based on the the-
ory of the identifiable factor model, we propose new
graphical identifiability criteria to identify total effects
under situations where it is difficult to use the identi-
fiability criteria provided by Pearl and his colleagues
and Huang and Valtorta (2006). Different from the
identification problem of the factor models, it should
be noted that we are interested in evaluating the to-
tal effects but not the whole causal model. That is,
it will be shown in section 3 that there are some situ-
ations where the total effect is identifiable even when
the whole causal model is not identifiable. These new
criteria are useful to identify total effects in observa-
tional studies, and they also provide a new viewpoint
to the identification conditions of factor models.

2 PRELIMINARIES

In statistical causal analysis, a directed acyclic graph
that represents cause-effect relationships is called a
path diagram. A directed graph is a pair G = (V, E),
where V' is a finite set of vertices and the set E of
arrows is a subset of the set V' xV of ordered pairs of
distinct vertices. For graph theoretic terminology used
in this paper, see, for example, Lauritzen (1996).

Suppose a directed acyclic graph G = (V, E) with a
set V.= {V1,Va, -+, V,} of variables is given. The
graph G is called a path diagram, when each child-
parent family in the graph G represents a linear struc-
tural equation model

§ O"uqz’UjV} + €,
Viepa(Vi)

Vi = i=1,...,n, (1)

where pa (V;) is a set of parents of V;. In this paper, if
there is no special statement, €,,,...,€,, are assumed
to be independent and normally distributed with mean
0. In addition, cv,.,(7#0) is called a path coefficient.

The conditional independence induced from a set of
equations (1) can be obtained from the graph G ac-
cording to the d-separation (Pearl, 2000), that is, when
Z d-separates X from Y in a path diagram G, X is
conditionally independent of Y given Z in the corre-
sponding linear structural equation model (e.g. Spirtes
et al., 2000). In this paper, it is assumed that a path
diagram G and the corresponding joint distribution

are faithful to each other; that is, the conditional in-
dependence relationship in the joint distribution is also
reflected in G, and vice versa (Spirtes et al., 2000).

Here, we denote some notations for further discus-
sion. Let 0gy..s+ = cov(X,Y|Z = z,a<S<b) and
Oyyzsr = var(Y|Z = z,a<8<b) and fyg.s+ =
Opy-zs* | Oxz2s(8* indicates that each element of s is
conditioned by the interval). For disjoint sets X, Y,
Z and S, let ¥, ...~ be a conditional covariance ma-
trix of X and Y given Z = z and a<5<b. We use
the same notations in the case where either X or Y
is univariate. In addition, let ¥,..+ be a conditional
covariance matrix of Y given X = x and a<S5<b.
When S or Z is an empty set, they are omitted from
these arguments. Furthermore, let By,.. = ny.zE;xl,Z
be the regression coefficient matrix of « in the regres-
sion model of Y on xUz. The similar notations are
used for other parameters.

A total effect 7y, of X on Y is defined as the total sum
of the products of the path coefficients on the sequence
of arrows along all directed paths from X to Y. In this
paper, it is assumed that the readers are familiar with
the identifiability criteria for total effects, for exam-
ple, the back door criterion, the front door criterion
(Pearl, 2000) and the IV method (Bowden and Turk-
ington, 1984; Brito and Pearl, 2000). When a total
effect can be determined uniquely from the covariance
parameters of observed variables, it is said to be iden-
tifiable, that is, it can be estimated consistently.

When Z d-separates X from Y in a path diagram G,
then both 04y.. = Byz.. = 0 and By.., = By, hold
true (e.g. Spirtes et al., 2000).

3 IDENTIFICATION OF TOTAL
EFFECTS

3.1 LEMMA

To derive new graphical identifiability criteria for total
effects, we first introduce the following lemmas:

LEMMA 1
When {X,Y} U S UT are normally distributed,

ﬂyzs ﬂyzst + Byt-mthz-sa (2)
Oyyzs = Oyyax — Byswzsstgl;sm- (3)
a

Equations (2) and (3) are the results of Cochran (1938)
and Whittaker (1990), respectively. In addition, the
following lemma is given by Wermuth (1989).

LEMMA 2

When {X,Y}USUT are normally distributed, if T is
conditionally independent of X given S or Y is condi-



tionally independent of T given {X }US, then fyq..+ =
Byz.s holds true. In addition, if T is conditionally in-
dependent of Y given SU{X}, then oyy.45t = Oyy.as
holds true. O

3.2 DUALITY BETWEEN LATENT
VARIABLES AND SELECTION BIAS

In this section, we consider two different situations:
one is a situation where a latent variable exists shown
in Fig.1 (a); the other is a situation where selec-
tion bias exists shown in Fig.l (b), where X =
(X1,---,Xp) is a set of observed variables, and U is a
latent variable which has an effect on X . In addition,
Fig.1(b) indicates that the data have been observed ac-
cording to the selection criterion a<S<b (both a and
b are possible values of 5).

Regarding Fig.1 (a), the corresponding linear struc-
tural equation model can be provided as

(a): Latent Variable Case (b): Selection Bias Case

Fig.1: Graphical representation
Xi:aziuU+€xia izla"'vpa (4)

which is called a single factor model (with correlated
errors). Then, the covariance matrix of X can be pro-
vided as

= Sppu + Qu)Q(u) (5)

where Q(u) is a p dimensional vector, which is called a
factor loading in this paper. Here, it should be noted
that ¥,, can be observed but oy, Yzz. OF X4 can

not be observed.
On the other hand, regarding the ¥_! by the
Sherman-Morrison-Woodbury formula for matrix in-
version (Rao, 1972), the inverse matrix of ¥, can be
represented as the form of

Son = Yo

where A(u) is a p dimensional vector.

Regarding Fig.1 (b), the corresponding linear struc-
tural equation model can be provided as

p
S = Zasiijj + €s; - (7)

Jj=1

Then, the covariance matrix of the selected population
can be provided as

’
Yz Yezw — Bas By, (Uss - Us*s*)

= S — Qs)Q(s), (8)

where (s) is a p dimensional vector (Johnson and
Kotz, 1972). Here, 555 = 05 — Ogs.5+ >0 since ogg.5¢ =
var(S|a<S < <b) is the variance of a doubly-truncated
normal distribution. In the selected population, it
should be noted that 3.,.;« can be observed but ..,
0ss Or Bys can not be observed.

-1

On the other hand, regarding ¥ .., we can obtain

ity = 5+ AG)A®S) (9)

TT-S

where A(s) is a p dimensional vector, which is also
called a factor loading in this paper.

In addition, when we discuss latent variable problems
and selection bias problems based on conditional dis-
tribution given Z, the following equations hold true:

I
Zxac~z = 2ar:ac~uz + B;cszzu.zUuwz

and
12 -
Ezz~zs* = Ezzz - st~zB;c3.zo—ss-za

where Gy5., = 0g5.2 — Tg5.25+ >0.

From these equations, we can understand that equa-
tions (5) and (6) take the same form as equations (9)
and (8), respectively. In this paper, such relationships
are called the duality between latent variables and se-
lection bias. By using the dual relationships, we will
show below that the identification conditions of factor
models are useful to solve the selection bias problems.

Let G%; be the undirected graph obtained by con-
necting any two variables X; and X; (i#j) in X by
an undirected edge only if the conditional covariance
of X; and X given U is not equal to zero. Let GZ" be
the undirected graph obtained by connecting any two
variables X; and X; (i#j) in X by an undirected edge
only if the conditional covariance of X; and X; given
{U} U X\{X;, X;} is not equal to zero. When we are
concern with the covariance structure of X not condi-

tioning on U, U are omitted from these arguments.

Then, Stanghellini and Wermuth (2005) provided the
following lemma.

LEMMA 3

Equations (5)( or equation (6)) can be solved with re-
spect to Xz and Q(u)Q(u)’ (or XL, and A(u)A(u))
if and only if one of the following conditions holds true:

(1) Q(u)#0 and the structure of zeros in ¥, is such

that every connectivity component of the complemen-

tary graph of GZ contains an odd cycle;



(2) A(u)#0 and the structure of zeros in X%, is such
that every connectivity component of the complemen-

tary graph of G%“ contains an odd cycle. a

con

The similar results hold true for equations (8) and (9)

3.3 IDENTIFIABILITY CRITERION:
LATENT VARIABLE CASE

It is well known that the graphical identifiability cri-
teria proposed by Pearl and his colleagues are useful
to evaluate total effects. However, Stanghellini (2004)
pointed out that there are some situations where these
identifiability criteria can not be applied to evaluate
total effects. As an example, we consider the problem
of evaluating the total effect 7,, of X on Y based on
the path diagram shown in Fig. 2, where U is an un-
observed variable and {X,Y, Z, W} is a set of observed

variables[]
/ {Ihﬂ\”
Z X Y

Fig. 2: Path Diagram (1)

In Fig. 2, since U is an unobserved variable( we can
not apply the back door criterion relative to (X,Y) to
evaluate the total effect 7. In additionOsince we can
not observe a set of variables that satisfies the front
door criterion relative to (X,Y’), the front door cri-
terion can not be applied, either. Furthermore, since
there are arrows pointing from the unobserved vari-
able U to every observed variable[] the conditional IV
method can not be applied] Under such a situation,
it is necessary to propose new identifiability criteria
different from current results.

When we consider the linear structural equation model
corresponding to the directed acyclic graph obtained
by deleting from Fig. 2 an arrow pointing from W
to Y (i.e., ayw = 0)0since we can obtain the same
covariance structure as the identifiable single factor
model (e.g. Stanghellini, 1997), the total effect 7,
is identifiable (Stanghellini, 2004)0 However( in Fig.
2, since there is an arrow pointing from W to Y[ the
number of observed covariances is less than that of the
path coefficients, which indicates that the whole linear
structural equation model can not be identifiable even
if the variance information on U is known (e.g. oy, =
1). However, the path coefficient v, is identifiable.
This result is summarized as follows (Kuroki, 2007):

THEOREM 1

Suppose that a set {X,Y, W, Z}UT of observed vari-
ables and an unobserved variable U satisfy the follow-

ing conditions in a directed acyclic graph G:
(1) {X,U}}JT d-separates Y from Z,

(2) {UIJT d-separates {X, Z} from W, and
(3) {X}UT does not d-separate Z from W.

When X is an nondescendant of V', if {U}UT satisfies
the back door criterion relative to (X,Y), then the
total effect 7., of X on Y is identifiable and is given
by the formula

Ozw-tO0yz-t — Ozw-tO0xy-t
Tyz = Y g (10)
Ozw-tO0zx-t — Ozw-t0xx-t

O
PROOF OF THEOREM 1

Since {U }UT satisfies the back door criterion relative
to (X,Y)0 7ye = Byz-ut can be obtained. In addition,
from Lemma 1, the following can be derived:

Oyzt = 6yz~mut0—zz-t + ﬂyz~uzt0—xz~t + ﬂyumzto—uz-tv
Ogy-t = 6ym-ut0—xm-t + ﬂyumto—ux-t;
Ozzt = 6zm-two—zz~t + ﬂzw-tzo—wx-t;

Ozwt = Prw-atTww-t + Brw-twTzw-t-

From condition (1)0 since Y is conditionally indepen-
dent of Z given {X,U}UT, By,.zut = 0 can be ob-
tained. In additionOby using Lemma 200we can obtain

Byaw-uzt = Byz-ut and Byu.zz¢ = Byu-z¢ Noting these re-
sults, we have

Oyzt = 6yx~ut0';cz~t+6yu~act0'uz~t-

Then, we can obtain
Ozw-tOyz-t — Ozw-tO0xy-t

= ﬂy%ut(o—zw-to—zz-t - Uzw-tazz~t)

+ﬁyu~xt (wa~t0uz~t - Uzw~t0'ua:~t)~

HereOsince (3,4.t270 holds true from condition (3) and
the faithful condition, from Lemma 1 and

BawutTww-t + Bru-twTuw-t5

ﬂzw-uto—wuwt + ﬂzwtw Oyw-ts

Ozw-t

Ozw-t =
we can obtain
Ozw-t0xzt — Ozw-tOxx-t

= _ﬁzw~tx0'ww~t(0'xac~t - 6;cw~t0"wx-t)

= —Brw-taCww-tTzc-tw 7é 0.

Thus by noting that Giw.ut = B2wwt = 0 can be ob-
tained from condition (2), we have

Ogw-tOuzt — Ozw-tOuz-t = 0.

By noting these results, equation (10) can be derived.
Q.E.D.



It should be noted that the assumption of the variance
of an unobserved variable U is not required in Theorem
1, which is different from the identification condition
of factor models (e.g. Stanghellini, 1997).

In the case where there are more than one unmeasured
confounder, Kuroki (2007) pointed out that the identi-
fication condition for multi-factor models (e.g.Grzebyk
et al., 2004) is also useful to identify the total effects.
The results can be summarized as follows.

THEOREM 2

Let X = {X1,---,X,} be a set of observed variables
and U = {Uy,---, Uy} a set of unobserved variables in
the path diagram G. When a linear structural equa-
tion model obtained by conditioning on {Uy, -, U;_1}
and marginalizing on {U;41,---,U} is regarded as a
single factor model of U;, if the single factor model
of U; is identifiable for any #(1<i<k)O .., is also
identifiable.

PROOF OF THEOREM 2

Firstd the covariance matrix corresponding to the lin-
ear structural equation model which is marginalized
on {Uy,---,Uy} is given by

1
Yoz = waul + E;cul i

rul*®
Uuruy

Then, Y44, is identifiable from the assumptionO

Here, we assume that Xyg.p,...u;_, is identifiable for
i(>2). Then, the covariance matrix correspond-
ing to the linear structural equation model which is
marginalized on {U;y1,---,Ux} and conditioned on
{Ui,---,U;—1} is given by

Zxac~u1 UG —1

1

= Eﬁfﬂc'ul“"ui + Exuq‘,'ul"'uq‘,—l ;ui-uln-ui,l'
Ousuiugui—1

Thus, Y4z.0,...u; i identifiable from the assumption[

By repeating this procedure, the result can be ob-

tained. QED

When Theorem 2 holds true for {X,Y}uZcX0Oif
ZUU satisfies the back door criterion relative to
(X,Y)0 the total effect 7, is identifiablel]

As an example, we consider the problem of evaluating
total effect 7,, in the path diagram shown in Fig. 3.
Although we can not apply the identifiability criteria
proposed by Pearl and his colleagues, since Theorem
2 holds true, the total effect 7, is identifiable and is
given by the formula

Oyz10z0w1 — Oyw10z129

Tyx =
Uzzlgzzwl - Uzwl Uzlzz

It is interesting that the above equation does not in-
clude the covariance parameter about Ws.

Fig. 3: Path Diagram (2)

3.4 IDENTIFAIBLITY CRITERION:
SELECTION BIAS CASE

Selection bias is another case that the identifiability
criteria proposed by Pearl and his colleagues can not
be applied to evaluate total effects. Consider the iden-
tification problem for the total effect 7,, based on the
path diagram shown in Fig. 4, which indicates that
sample selection is conducted according to a criterion
a<S5<b. Then, S is called a selection variable. In ad-
dition, {X,Y, Z, W} is a set of observed variables.

Z X Y
w
S

Fig. 4: Path Diagram (3)

In Fig. 4, since a sample is selected from the popula-
tion using such a criterion as a<S5<b, the statistical de-
pendencies among {X,Y, Z, W} are biased. Thus, we
can not apply any identifiability criteria proposed by
Pearl and his colleagues to identify the total effect. On
the other hand, when we consider the linear structural
equation model corresponding to the directed acyclic
graph obtained by deleting from Fig. 4 an arrow point-
ing from Y to W(i.e. auyy = 0), since the number of the
observed covariances is equal to that of the path coef-
ficients, the total effect 7,, can be evaluated through
the observed covariances. However, in Fig. 4, since the
number of the observed covariances is less than that of
the path coefficients, the whole linear structural equa-
tion model is not identifiable. But, the total effect 7,
is identifiable through the following theorem.

THEOREM 3

Suppose a set {X,Y, W, Z}UT of observed variables
and a selection variable S satisfy the following condi-
tions in a directed acyclic graph G:

(1) {X}UT d-separates Y from Z,
(2) T d-separates {X, Z} from {W},
(3) {X}UT does not d-separate S from Z, and



(4) T does not d-separate S from W.

When X is a nondescendant of Y, if T satisfies the
back door criterion relative to (X,Y), then the total
effect 7, of X on Y is identifiable and is given by the
formula

Ozw-ts* Oyz-ts* — Ozw-ts* Oxy-ts*
Tyz = ) (11)
Oxw-ts*Ozx-ts* — Ozw-ts* Oxx-ts*

O
PROOF OF THEOREM 3

Since T satisfies the back door criterion relative to
(X,Y)O7yy = Bya-+ can be obtained. In addition, from
Lemma 1 and condition (2),

Oyzts* = Oyzat + ﬁywtza':czt - 6ys~tﬁzs~t&ss-t
Ogy-ts* = Oyx-t — 6;cs~tﬁys~t&ss-t7

Ozzts* = Ozgt — BzstBrstTsst,

Ozw-ts* = 7ﬂzs~t6ws-t6—ss-tv

Ogw-ts* = 7ﬂzs~tﬂws~té—ss-t~

From conditions (1)0since Y is conditionally inde-
pendent of Z given {X}UTO 0y,..+ = 0 can be ob-
tained. In addition from Lemma 20 we can obtain
Byz-2t = Pyz-+0 Using these results, we have

Oyz-ts* = ﬁywtazczt - 6ys~tﬁzs~t6'ss-t-

Thus, we can obtain

Ogw-ts* Oyz-ts* — Uzw~ts*0'xy~t5*
ﬂyziﬂws-té—ss-to—xm-t(ﬁxs-tﬂzz~t - 6zs-t)

= 7/6ym-tﬂws~t6ss-t0—zz~to—zs-xt/0—ss-t-

Herel since Bys.t0:s.4¢70 holds true from conditions
(3) and (4) and the faithful condition, according to
Lemma 10 we can obtain

Ozw-ts*Oxz-ts* — Ozw-ts*Oxx-ts*
7/6ws-to—zz~t6—ss-t(ﬁzs~t - ﬂz&tﬂzzi)

7/6105-15Uss-tgxm-tazs~zt/ass-t~

By noting these results, equation (11) is derived.
Q.E.D.

3.5 IDENTIFAIBLITY CRITERION:
LATENT VARIABLE AND
SELECTION BIAS CASE

Finally, we consider the case where both latent vari-
ables U and selection bias according to a selection cri-
terion a<S<b exist. Let X (X,Y€X) and T be sets
of observed variables, the steps for judging whether or
not the total effect is identifiable are as follows:

Step 1: Check whether or not the combination of a
subset of X\{X,Y} and UUT satisfies the back door

criterion relative to (X,Y"). If the answer is affirma-
tive, go to Step 2.

Step 2: By noting that
Eartac~ts* = E:cx~t - B;cs~tB;;5.t&ss-t7

check whether or not the structure of zeros in X,,.;
(or ©.1,) is such that every connectivity component
of the complementary graph of GZ! (or GZ! ) contains
an odd cycle. If the answer is affirmative, since Y,;.+
is identifiable (Stanghellini and Wermuth, 2005), then

go to Step 3.

Step 3: Check whether Theorem 2 holds true for X,.,.¢
with regard to U. If the answer is affirmative, since
Yex-tw 18 identifiable, then we can evaluate the total
effect 7y, of X on Y.

4 APPLICATION

The above results are applicable to analyze the data
from a study about setting up painting conditions of
car bodies, reported by Okuno et al. (1986). The data
was collected with the purpose of setting up the pro-
cess conditions, in order to increase transfer efficiency.
The size of the sample is 38 and the variables of inter-
est, each of which has zero mean and variance one, are
the following:

Painting ConditionO Dilution Ratio (X1),
Degree of Viscosity (X2), Painting Temperature (Xg)

Spraying Condition0 Gun Speed (X3),
Spray Distance (X4), Atomizing Air Pressure (X5),
Pattern Width (Xg), Fluid Output (X7)

Environment Conditiond Temperature (Xy),
Degree of Moisture (X10)

Response: Transfer Efficiency (Y)

Concerning this process, Kuroki et al. (2003) pre-
sented the path diagram shown in Fig. 5 (for the
detail, see Kuroki et al., 2003). Based on the path
diagram, Kuroki et al. (2003) presented the estimated
correlation matrix. We here provide a part of the cor-
relation matrix in Table 1. From Table 1, we assume
that the covariance information on X4 and X is not
obtained.

Although X1, -, X¢ are considered to be controllable
variables in Okuno et al. (1986), X5 and Xg are taken
as treatment variables from controllable variables in
order to evaluate their total effects from nonexperi-
mental data in this paper.

Table 2 shows the selected variables for estimating
total effects. The treatment variables of interest are
listed in the first column. The second column shows



Xy
Kie)

Fig. 50 Path Diagram (Kuroki et al., 2003)
Table 10 Estimated Correlation Matrix (Kuroki et al., 2003)

| X3 Xs X5 X6 X3 Xy Y
X; | 1000 —0.736  0.028 —0.042 0.216 0.283 —0.091
Xy | —0.736  1.000 —-0.063 0.095 —0.684 —0.635 0.326
X5 | 0.028 —0.063 1.000 0.291 0.076 0.099 —-0.277
X6 | —0.042  0.095 0.291 1.000 —-0.114 -0.149 —0.250
Xs | 0216 —0.684 0.076 —0.114  1.000 0.761  —0.493
X9 | 0283 —0.635 0.099 —0.149 0.761 1.000  —0.475
Y | -0.091 0.326 —-0.277 —-0.250 —0.493 —-0.475 1.000

Table 20 Estimates of Total Effects

sets of covariates used for identifying total effects. The
third columns shows the estimates of total effects.
First, consider a situation that we wish to evaluate
the total effect of X5 on Y. Then, it can be recognized
that the total effect can not be evaluated based on the
back door criterion or the conditional IV method, be-
cause the covariance information on X9 can not be
obtained from Table 2. In addition, since Xio exists
in the back door path between X5 and X7, the front
door criterion can not be applied, either(] However(
since a set of variables provided in the second column
satisfies the conditions in Theorem 1, the total effect
can be evaluated by using equation (10)0

Next, consider a situation that we wish to evaluate the
total effect of Xg on Y. Then, it can be recognized that
the total effect can not be evaluated based on the back
door criterion or the conditional IV method, because
the covariance information on X4 can not be obtained
from Table 2. In addition, there is not a set of variables
satisfying the front door criterion(] However[ since a
set of variables provided in the second column satisfies
the conditions in Theorem 1, the total effect can be
evaluated by using equation (10)0

5 DISCUSSION

treatment covariates total effect
Xo Z=X1,W=X9T = X5 -0.116 This paper discussed identification problems for total
Xs Z=XsW=X9T=¢ -0.465 effects based on causal modeling in observational stud-

ies with latent variables and selection bias. In order
to derive the graphical identifiability criteria, we in-
troduced identification condition for factor models to
the identification problem of total effects. In addition,
we pointed out that there are some cases where the
total effect is identifiable even when the identification
condition for factor models does not hold true. Fur-
thermore, we proposed new identification conditions
of total effects, and provided the closed form expres-
sion of the identifiable total effects. The results of this
paper help us judge from graph structure whether the
total effect can be evaluated from observational studies
in the presence of latent variables and selection bias.
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