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Abstract

Gaussian Markov random fields (GMRFs) are
useful in a broad range of applications. In this
paper we tackle the problem of learning a sparse
GMRF in a high-dimensional space. Our ap-
proach uses thé,-norm as a regularization on
the inverse covariance matrix. We utilize a novel
projected gradient method, which is faster than
previous methods in practice and equal to the
best performing of these in asymptotic complex-
ity. We also extend thé, -regularized objective

to the problem of sparsifying entire blocks within
the inverse covariance matrix. Our methods
generalize fairly easily to this case, while other
methods do not. We demonstrate that our exten-
sions give better generalization performance on
two real domains—biological network analysis
and a 2D-shape modeling image task.
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depends strongly on the density of the GMRF structure.
Finally, the number of parameters that need to be stored
can be an important computational factor in some settings.
These latter issues are particularly relevant in systencs, s

as speech recognition (Bilmes, 2000) or tracking (Bar-
Shalom & Fortmann, 1988), that need to achieve real-time
performance. Sparsity can also be beneficial in a knowl-
edge discovery setting, where the structure of the learned
model may provide insight into the relationships between
the variables. For example, sparse Gaussian models have
been successfully used to explore interactions between the
genes in gene expression data (Dobra et al., 2004).

The idea of learning sparse GRMFs goes back to the work
of Dempster (1972) where elements of the inverse covari-
ance matrix are explicitly set to zero and the remaining pa-
rameters learned from data. Other early work used a greedy
forward/backward search over edges in a Gaussian MRF
that quickly became infeasible as the dimension of the
problem, grew (Lauritzen, 1996). More recently, Baner-
jee et al. (2006) formulated the problem as one of opti-
mizing a log-likelihood objective regularized with &p-

A key challenge in graphical models is learning modelnorm penalty on the entries. This penalty is known (Tib-
structure and variable independencies from data. We cOnshirani, 1996) to push parameters to zero, inducing spar-
sider this problem in the context of Gaussian distributionssity. (See Section 2 for more details on this and other other

dom Fields (GMRFs). GMRFs are an important class of
graphical models that have found applications in a wid
range of areas including oceanography, image denoisin
speech recognition, and FMRI (Willsky, 2002; Bilmes,

€
41-penalized log-likelihood objective for Gaussian digtrib

In this paper, we present a new algorithm for optimizing the

3

ions. Our approach is based on projected gradient meth-

2000). In a GMRF, independencies—edges absent from th@dS originally proposed by Levitin and Polyak (1966). Like

network—correspond to zero entries in the inverse covari

other methods based on this objective, our method exploits

ance matrixk’ (Lauritzen, 1996); that is, the GMRF has an the fact that the objective is tractable and convex, hence
edge between variableésand j if and only if K;; # 0.

Thus, learning a sparse GMRF corresponds precisely t
learning an inverse covariance with many zero entries.

avoiding problems from greedy or heuristic searches. How-
gver, unlike the work of Banerjee et al. (2006), the com-
plexity of our algorithm grows a®(n?) rather tharO(n*)

per iteration. For problems of high dimension, this order-

Sparsity in the inverse covariance matrix has a number ohf.magnitude reduction in complexity can be significant.
advantages. First, promoting sparsity when learning from

limited data has been shown to produce robust models thi/€ @S0 generalize the sparse inverse covariance problem
generalize well to unseen data (Dempster, 1972). Secon&c,’ that of estimating an inverse covariance with block spar-

the cost of both exact and approximate inference (e.g., be
lief propagation message passing (Malioutov et al.,

sity.  This task corresponds to finding a Gaussian MRF

2006))” which certain groups of edges should all be penalized



together. For example, in a GMRF over genes, we maybleZ = K and its associated dual varialiié € R™*",
want to jointly penalize any interaction between genes ineading to the Lagrangian
two pathways; this penalty intuitively tries to reduce inte

pathway interactions, but once the two pathways are al- £(5: 2 W) = —logdet(K) + tr(XK)
lowed to interact via one pair of genes, the penalty is re- + Z Xij|Zij| +tr(W(K — 2)).
moved for all other pairs. To our knowledge, this exten- i,

sion has not been considered elsewhere. Indeed, previOL,i.t;he above Lagrangian is separable into terms involving
methods do not naturally handle this setting, whereas OUL 1\ d terms involvingZ, which enables us to find the dual.
method handles it easily, with no real increase in COMPUE,: the terms involvir;gZ we have that
tational cost. We present results demonstrating the value

of the block structure to two distinct applications: leagi . _ 0 if [Wi] < Ay
networks over genes from gene expression data, and learns! _ Aigl Zij| = (W 2) = { —0o0  otherwise.
ing models of the 2D shape of mammals. “
The infimum overK for the remaining terms can be found
2 Background and Related Work by usingV  log det(K) = K~ (and assuming that +
As mentioned above, the literature on estimating covari/V = 0) to give

ance matrices from data has a long history. Our work start§, [ 1og det(K) +tr((S+W)K)] = log det(£+W)+n
from the formulation of Banerjee et al. (2006) which we &

review below. We then compare this approach to severatombining, we get the following dual problem for (1):
other recent works. R
maximize logdet(X + W)

2.1 ¢;-Regularized Problem For.mulat|on subject to  [Wi;| < Ay Vi . (2)
We assume that we are given a dataset = R

{z[1],...,x[m]} in which the samples € D are drawn The constraint thak + W > 0 is implicit in the objective
from somen-dimensional Gaussian distributiovi(x, ).  because of the convention thiag det(X) = —oo when

Given a Gaussian with meanand covariancé’, the av- X 3 0. We denote the sV : |W;;| < X;; Vi, 5} by By,
erage log-likelihood (modulo unnecessary constantspfor which is a box constraint indexed by the tuple= (\;;).

with same mean can be written as The duality gap given a dual feasible poiit € B, (and
N H H Y —1y\;
log det K — tr(SK) hence the primal poink’ = (X + W)~ 1) is
where K :AZ*1 is the inverse covariance matrix for the n=tr(XK)+ Z Aij| Kij| = n.
model, and: = L 3" (z[i] — p)T (2[i] — p) is the em- i

pirical covariance of the datasBt As we discussed, the Based on the dual problem, we prove the following lemma,
sparsity structure in the matrix” defines the structure of \hich guarantees a solution to problem (1):

the GMRF corresponc_ilng to this Gaussian: a zero entry oma 1. With probability 1, o long as \;; > 0 for all

K correspor_lds preusgly o the_ abs_ence of an _e_dge b%}é jand \;; > 0, theminimization problem (1) isbounded
tween the variablesand;j. For uniformity of exposition, below and has a unigue optimal point .

we use the matrix terminology and notation in the remain-
der of our discussion. Proof We consider the case when; = 0 as Banerjee

Following the approach of Banerjee et al., we add sparsity©t &l (2006) already consider the case wher> 0. First,

promoting;-penalty to the entries of the inverse covari- with probability 1,3 has non-zero diagonals becaus_e it was

ance. We can now formulate the convex optimization prob-9€nerated from a set of data samples. If there is a dual

lem for estimating the inverse covariance of our model:  f€asible pointfor (2), i.e., somé” such thatliag(W) = 0

and|W;;| < \;;, the dual problem has a non-infinite value,
minimize — log det(K) +tr(SK) +Z)\ij\[(ij\, (1) and so the primal is bounded below. Further, if we can
K-0 o find a dual-feasibléV” such thaiW;;| < \;; (i.e. W isin
the relative interior of the domain), then Slater’s coriatra

where we u_s eAthe not.a.tlom d>f'0 .to mﬂmg\[e that th? s;;]m- gualification (Boyd & Vandenbe[ghe, 2004) guarantees a
metric matrixA Is positive definite. Here,;; controls the primal-dual optimal paitk* = (5 + W*)~! with zero

sparsity of the solution to (1). As we show in Lemma 1, SOquality gap. So we simply show thatla in the relative
long as);; > 0 foralli # j (and; > 0) the solution y 9ap. Py
to (1) is unique and positive definite. Furthermore)if is )

large enough, we will force all off-diagonal entriesiéfto ~ Consider the matrixD = diag(X) > 0. Fora € [0,1) we
zero. haveaX + (1 — «)D > 0. But, for anya, we have that

diag(a3 + (1 — a)D) = diag(%). Thus, we choose

interior of the domain exists.

It will be instructive now and for later development in the R . R
paper to take the dual of (1). We introduce an auxiliary vari- W =aX+ (1 — a)diag(X) — X, 3)



which has zeros on the diagonal, anddotlose enough to  starting point when the number of samples is less than the
1 will have [W;;| < A;. Further, dimension, which we do not.

We have already mentioned Meinshausen aadlBann’s
work (2006) regressing single variables against one an-

ChoosingV as in (3) gives a dual feasible point in the Other. The advantage of their approach is in its efficiency,
relative interior of the domainiy’* is unique by the strong @S Solvingn regressions each withvariables can be done

convexity oflog det over the positive definite cone. 1  Very quickly, i.e.,in the time it takes to do one pass over all
If we can find the maximizingV* for (2), we can also the (_:olumns .W'th LASS.O' Howe_ver, they do npt directly
easily calculate the sparsity fdt* — (2 + W)L by obtain a maximum likelihood estimate from their method,

the complementarity conditions d#;; and K;; (Boyd & only the structure of the graph.
Vandenberghe, 2004). Specifically, || < A;;, then ~ The SPICE algorithm of Rothman et al. (2007) solves (1)
K} = 0. Lastly, as shown in the analysis of the so-calledwhen);; = 0 (i.e., applying arf;-penalty only to off diag-
maximum determinant completion problem (see Boyd andnal elements of the inverse covariance). The advantages
Vandenberghe (2004)), if we constrain only the diagonalof this penalty are many: Rothman et al. prove that such a
elements of¥ and do not constrain its off-diagonals, then setting of the regularization terms is consistent so that th
maximizinglog det(i+W) will drive the off-diagonal en-  solution to (1) approaches the true inverse covariance as
tries of K to 0; as such, choosing; = |iij| forces com- the number of data samples increases, and they give experi-
plete sparsity inK and we find an MRF with no edges, ments showing that not penalizing the diagonal consistentl
i.e., all the variables are independent. Thus, when solvingearns model structure more accurately than does regular-
(1), we have a natural upper bound bieyond which no izing each entry of<. Further, Meinshausen (2005) gives
additional sparsity can be gainéd. simple conditions under which penalizing the on-diagonal

) entries ofK in (1) gives thevrong inverse covariance, even
22 Prior Work in the limit of infinite data. These results underscore the im
One recent approach for learning sparse GMRFs is to focugortance of Lemma 1, which gives a dual-feasible starting
on learning the set of neighbors for a particular variable bypoint even when\;; = 0. To our knowledge, this has not
regressing that variable against the remaining varialoles ipeen noted before this work.
the network with art, -penalty to promote sparsity (Mein- disadvantage of the SPICE algorithm is that, like

shausen & Bhimann, 2006). An alternative approach, first B . t al’s aloorithm. it ¢ dinate-wi
presented by Banerjee et al. (2006), is to solve the opti- anerjee €t al.s aigorithm, It pertorms coordinate-wise
mization problem (2). It is convex and can be solved usinQUpdates. (though it uses the columns of the Cholesky de-
interior point methods i (n° log(1/¢)) time to a desired composition qu)' It rgepeatedly_ iterates through al! t_he
accuracy:, however, this becomes infeasible for even mod_polur_nns, solvmgn_O(n )lregressmi’ls atevery step, giving
t a time complexity again o©(7Tn*). Further, Rothman

eraten. Banerjee et al.’s approach was to solve problem (2 . g
J PP b ( j t al.’s algorithm has no explicit way to check convergence,

iteratively, column by column, as a sequence of QPs. That ", . . .
:s thé\; dyefindl} _ Z)ii- Wuand partitior?]uandi asQ as it does not generate dual-feasible points (which ouralgo

rithms do), and they rely on truncation of near-zero values
[ U we o S11 s12 rather than explicit conditions for sparsity in the inverse
- - T ‘ covariance (such as complementarity of primal-dual vari-
ables). The algorithm they propose is also somewhat com-
They then solve a sequence of box-constrained QPs (swapticated.
ping rows ofU to get all the rows), each iteration setting
12 = argmin, {yTUﬁly | ly — s12]| < /\} , updatingU Proi radi Meth
and W appropriately. This method take3(7Tn*) time, 3 ojected G _ad ent et od .

e propose a projected gradient method for solving the

whereT is the number of passes through the columns otV ) : ) 2
the matrixt. dual problem (2). Projected gradient algorithms minimize

) . ] _an objectivef (x) subject to the constraint that< S for
An alternative to the box-constrained QP above (its dual) isome convex ses.2 They do this by iteratively updating
to minimize a sequence of re-weighted LASSO problems.

In work developed in parallel and independently of our pa- z:=g(x +tVf(x))

per, Friedman et al. (2007) use this to solve problem (2).

Their method enjoys better performance (aroaid™n3), ~ Wheret is astep size ands(z) = argmin, {[lz—y|l2 | y €
though no analysis is given) than Banerjee et al.'s, which is5 } is the Euclidean projection onto sg{Bertsekas, 1976).

similar to the methods we develop in our paper. They, howFirst order projected gradient algorithms are effectivemwh
ever, explicitly rely on\;; being positive to get a feasible second order methods are infeasible because of the dimen-

sion of the problem. As the dimensions of our problems

NS4+ W =ad+ (1 —a)diag(®) = 0.

T
1412 u22 312 322

!Presumably one could regularize the diagonals further
though this seems of little practical use. 2In our caseS is the set ofx x n matrices in the boX3),.




Algorithm 1 Maximize log det(3: + W) subject toW e  For the simple box-constrained projections, because we
By = {W | [Wi;| < \i;}. Given empirical covariance Ccan immediately zero out many entries of the gradi@nt

3 > 0, \ij, duality gap stopping criterion, andW such and still have a descent direction (see lines 5 through 7
tha?W c JB/\ LW = 0, and Wi, = of Algorithm 1, which are not strictly necessary but im-

1. repeat prove the performance of the line search), a simplle hguris-

2 Compute unconstrained gradient tic line search based on the second-order approxma'uqn to

3 Q= (S ! log det performs very well. The second ordgr expansion
of the log-determinant function around a poikit (Boyd

& Vandenberghe, 2004) is given byg det(X + AX) ~

logdet(X) + tr(X'AX) — Ftr( X TAXXTAX).

4:  Zero components of gradient which would result in
constraint violation

2 g“ :-i?)for all Wos = Aos andGes > 0 Thus, given the descent directiod, we approximate

: ij = i = \ij ij A

7. Gij := 0 for all Wij = 7)\”' andGi]‘ <0 1Og det(z +W+ tG) by

8:  Performline search A log det(2 + W) + ttr((X 4+ W)~1G)

9: = argmax, log det(X + g, (W +tG)) — 2 (E+W)IG(E+ W) IG)

10:  Update and project . .

11 W=y, (W +tG) and perform the line search of Algorithm 2. Convergence
12- Ko— (i :L W)~ is guaranteed because the iterated¥oform a sequence in
13: Computé duality gap a compact spacB, andlog det(X+ W) is always increas-

i ™ | ing. If the line search cannot return a satisfyinghen no
14: 1= t(EK) + 2 Nigl Kig| = improvement can be made in the projected descent direc-
tion, so standard arguments by KKT conditions for a dif-
ferentiable convex function guarantee that we have reached
the optimum.

15: until (n < €) or maximum iterations exceeded
16: return K

Algorithm 2 Line search to find feasiblefor log det(% +
W +1C) glven.fOA — 10%1det(2 W) We can extend the basic problem of (1) to cases in which
1 t:= tr((ij;v(()zjcvj‘/()?rgf))*lc) we are interested in sparsity not just between single vari-
2: whilelog det <2+HBA(W+tG)) < f, do ables but betvyeen entlre blocks of variables. In many
problem domains, variables can be naturally grouped into
3 ti=1t/2 blocks. For example, we might try to model a 2D shape
4. end while made up of articulated objects (such as the outline of an an-
imal) in which we want to regularize interactions between
object parts (such as legs, body, head, and tail). Land-
often exceedh = 1000, giving more than 500,000 differ- marks along the contour of an animal’s head can naturally

ent parameters, this makes projected gradient methods ke grouped together, as these landmarks move collectively
reasonable choice. as the animal moves through different articulated forms. In

. . . modeling gene networks, we may want to encode the intu-
The projected gradient method for our problem is shown 99 Y

: ’ . . ition that interactions happen at the level of pathways, i.e
in Algorithm 1. The unconstrained gradient of the dual _; : ; . :
objective function (2) is; — (i + )1, We perform either two pathways interact, in which case multiple genes

a line search to find the step sizethat aporoximately 2" be involved, or they do not interact at all. Block regu-
N th i tl' tp tshl bi tpp )Ell'h' y I[@rization might also arise in the context of learning multi
glves Ine greatest increase 1o e objective. 'S S€artflsolution models constrained so that only variables withi

.needs. FO guaraptee th'at t.h e estimated covariange specific resolution levels interact (Willsky, 2002).
is positive definite, which it does because we assume that

4  Structure Extensions

logdet X = —oo for X % 0. We can guarantee that the In the block regularization case, we let the entries in our
initial ¥ + W = 0, because. = 0, and we can simply inverse covariance matrix be divided into< n? disjoint
initialize W;; = \;; and the rest of/’ via Lemma 1 (this Subsets, ..., .S, (the disjointness assumption is essential

initialization is optimal for the diagonal elements, so we to our method, as we see below). We can find the depen-
do not modify them through the course of the algorithm).dencies between the subsets by solving the following block
The projection of the gradient appears in two places. First{1-regularized log likelihood problem:

we immediately zero out some entries of the gradientwhen . . . ~log det(K) + tr(iK) (4)
W;; is at the boundary and';; would pushW;; outside

B,. Second, during the line search, in each step we project +> Aemax {|Kij| : (i,5) € Si}-
the gradient onto the box-constrajiit;;| < \;; via the op- k

erationIlz, (W + tG), which simply sets any entry \;; The subseb;, encodes a set of interactions that, as soon as
to A;; (and likewise for—\;;). one of the interactions in the set exists, there is no reason



to penalize any of the other interactions. For example, in|gorithm 3 Solves (5) given an initialV’ such thats +
the 2D shape model, the subsgfsmay be constructed as 1 » 0 and constants anda, 0 < 8 < 1 and0 < a < 1.

Sqr = By x B, where theB, andB, represent the set of —1- _7
variables belonging to th¢" andr'" articulated body part, 5. repeat
respectively. 3:  Compute unconstrained gradient

We can perform a similar derivation to the one in Sec-
tion 2.1 to find the dual problem for (4):

maximize
subject to Z(i,j)esk Wil <A, fork=1,...,p.

To apply a projected gradient method to (5), we need tolof

project to the constrainty_; ;s [Wi;| < Ax. Recent
work by Duchi et al. (2008) provides such a method, giving
a randomized linear time algorithm to project a veatao

the constrainf|z||; < C. The setsS;, must be disjoint so

4
5
6
log det(3 4+ W) (5) 7
8:
9

12
13:
14.

G=E+w)!
Compurte direction of step
D =Tsg(W +tG) - W
Compute initial and next objective values
fo = log det(X + W)
fi = log det(S + s (W + tG))
Perform backtracking line search
while f; < fo + atr(DG) do
Decrease ¢, recalculate direction and objective
t=03-t
D =Tg(W +tG) - W
fi = log det (S + g (W +tQ))

that we can project to each constraint in (5) independentl)}5:
(and hence efficiently). We refer the reader to their paper5:
for a description of the actual projection algorithm. 7

end while

:  Compute next points and duality gap

) _ ) ) ) 18: W =T1Ig(W 4+ tG)

Given the linear time algorithm to project to dp con- 4. K — (53 + W)

straint, we can develop a.@(v-”ﬂ) expected ftime (the 5. n = tr(SK) + S Ml Ko 1 (i05) € Sklloo — 7
same efficiency as the projection 8, of earlier meth-  51.  |ncreaset dightly

ods) method to project to the feasible set= {W | 29 t=t/3

Z(M)esk Wil < A,k =1,...,p}. The _met_hod sim- 53 until n<e

ply iterates through each of the blocKs, projectingW;; :
(i,7) € Sy to the constraint thak_, o [Wi;| < Ay to
getW € S. With this as a building block, Algorithm 3
maximizes the dual (5). Because the constraint set is more
complicated, making it difficult to make the second orderIn this section, we describe our experimental results. We
expansion oflog det accurate for the projected direction, performed experiments both on synthetic and real data,
the algorithm uses Armijo-like line searches as describedathering timing information as well as calculating log-
by Bertsekas (1976) rather than the simpler line search dikelihood on test data, validating the usefulness of spars
Algorithm 1. If we letg = V f(z), the Armijo line search estimators. This validation seems to have been notably ab-
for a projected gradient maximization method with func- sent from much of the literature on sparse inverse covari-
tion f returns the first such that ance selection.

Experimental Results

f(Ms(z +tg)) > f(z) + aVf(2x) (ls(z + tg) — ) 51 Timing Results

We ran a series of timing experiments for the original prob-

wheret is initi_alized to 1 and dec_r_eas_ed by a r_nu_ltiplier lem from equations (1) and (2) comparing our approach
0§ < 1 every time the above condition is not satisfied. Into that of Banerjee et al. (2006) and Friedman et al.

our algorithmt is a(japtively ch.osen to make the line Sea_mh(2007). To generate data for our timing experiments, we
converge more quickly (see line 22 of Alg. 3), and SettiNgonstructed random x n sparse inverse covariance matri-

0 < o < 1 guarantees convergence of the method. ces with roughly 20 edges per node. For each such matrix,
Previous methods developed for solving the penalizedve generated./3 samples and used them to construct the
maximum-likelihood problem for Gaussians are unable toempirical covarianc&. We selected for the penalty in (1)
handle the block; -penalties of (4). Effectively, batch steps so that at solution, the inverse covaria€ehad (approx-

are needed to handle the more long range block constraintanately) the correct number of edges. Our timing experi-
the coordinate based methods of Banerjee et al. (2006)nents were run on a computer with a 1.7Ghz Intel Xeon
Friedman et al. (2007), and Rothman et al. (2007) cannoB2-bit processor and 1.96GB of RAM. The run times to
account for more global constraints that tie parameters imchieve a duality gap of = 0.1 are plotted in Fig. 1,
arbitrary columns and rows. Our projected gradient methwhich shows CPU time versus problem size compared to
ods, however, extend to the case of block penalties, witlBanerjee et al.'s and Friedman et al.’s column-wise coordi-
ease. Further, the added complexity is negligible, as th@ate ascent algorithms. The results show that our projected
entire projection step is stilD(n?), while the expensive subgradient method outperforms Banerjee et al.’s column-
O(n?) step is computing the gradient. wise ascent by one to two orders of magnitude on these



Figure 1: Run
times in log-scale
4 of the method pre-
sented in this pa-
per versus Baner-

Test log-likelihood
Test log-likelihood

CPU time (seconds)

; jee et al.’s (Iterated Ful —Block L1
© ——Projected Subgradient| QP) and Friedman L1 ——L1
—a— |terated QP . © 10 20 30 °um 0w o W % w 0 :nqu %
) Graphical Lasso et al’s (Graph|ca| % Non-zeros % Non-zeros
400 50 R w0 1000 Lasso). (a) (b)

) o Figure2: Log-likelihood results: (a) for synthetic data, compar-
tests. Our method seems to find a solution in roughly half tang ¢, -penalized inverse covariance to (best-case) full covariance;
two-thirds the time that Friedman et al.’s does, thoughrthei (b) for 2D shape-recognition test data, comparing the block versus

method seems to more easily be optimized when the prithe non-block method.

mal matrix X' becomes sparse. Further, in our experiment . I .
when3: was not full rank, Friedman et al.’s method seemejl) and the block-penalized objective (4) to learn sparse in

to have more difficulty maintaining a positive definite so- verse covarianceX (). For the block penalties, we manu-
) ) Y1 g a positiv - ally chose the articulated body patfs as the head, neck,
lution than did ours, which guarantees positive definitenes

of £+ W throughout. We note that due to the slightly more ?:Za[gh,erChf(Iﬁ%nbsgit,sZr;i:jilI.(i:(r;ﬁc?ilr(])gssie;)e Z]r?;
complicated projection, the run times of Alg. 3 are roughlythe en(éllt A Tfor S, was set so thaky o | Sy 2 '
twice those of Alg. 1. PenaityAx k k k-

We measure the performance of the competing methods in
5.2 Synthetic Log Likelihoods two ways: by test set log-likelihood and by performance

) ) on a classification task. In the log-likelihood case, we per-
To test the impact of learning sparse structures, we CoMg, e five-fold cross validation of the training data and

pared opwl—penalized inverse covgriance est'imatiqn fromSWept the\ penalties for both (1) and (4), ranging from
(1) to Tikhonov regularized covariance matrices, i.e., Seyy|_gparsity to no-sparsity solutions for the inverse oy
lecting the covariance matrix to Be = X + v for some  gncer e set the meap(© for each class simply as the
v > 0, which guarantees the positive-definitenesEofio  yqining set mean. As a baseline, we also chose a “full” co-
do this, we randomly generated 20 inverse covariance M&ariance matrix. + vI for each class using the Tikhonov

trices with 50% sparsity and dimension= 60. From each  o0jarization technique described above. As above, we se-
of these, we generated 30 samples for a training set (defifja e, to give the best test log-likelihood for each class in

ing a covariances) and 30 samples for a test set. We then, ;- ross-validation procedure. The block sparsity led to
variedy to compute the besest set log-likelihood achieved 1, jerate improvements in the test likelihood, which can
by Tikhonov regularized covariance acrossal Fig. 2(8) e geen in Fig. 2(b); we note that we do not plot the full
shows this best-case test log-likelinood for the Tikhonove, ariance result, as its best average log-likelihood sh te
regularized covariance versus the log-likelihood for spar y4ta is -173.22. which is off the bottom of the plot. We
covariances matrices output by Algorithm 1 as we SweeRgq thay, -regularization significantly improves general-

3 -3
the penalty parametex from max(|%;;[) t0 107", The 4400 and that our block approach provides yet an ad-
results show that, for appropriate levels of sparsty, ditional improvement.

regularized covariance estimation outperforms simple reg

seen in a classification task. In this case, for each of the
5.3 Mammal 2D Shape Models three methods (sparse, block sparse, and Tikhonov regu-

larized) and for each class we chose the inverse covariance
Moving on to real data, we aimed to study whether our i () that maximized the Gaussian log-likelihood on a held-
block ¢, approach achieves better generalization than othegt validation set. The task is to classify examples from a
approaches for learning the model. In our first applicationsest set, that is, to assign a labeéb a given vectop € R120
we consider a two-dimensional shape classification taskyom the test set. We assign the label fosimply as the

Here, we have a series of 60 landmarks, eadxag point  ¢|ass that has the maximum likelihood far
in 2D, defining the outline of a mammal as a vectaRit?°.

The mammals are from six classes: bison, deer, elephants,= argmax {log det K — (v — p)TK© (y — MC))} :
giraffes, llamas, and rhinos. There are on average 42 ex- ¢
amples from each class, each a hand-labeled outline fromehe false positive and false negative error rates over ten

real image. Our task is to model each animal's outline as @jfferent testing runs for each class are in Table 1. We

Gaussian distribution, learning a meat¥ and covariance ——

() for each of the six animal classes 3Having the penalties on the blocks correspond to their sizes
overcomes the tendency for larger blocks to have edges since they

We used and compared the standard sparsifying objectivean more easily affect the log-likelihood.



Figure 4:  Average
test log-likelihood
on Gasch dataset for
¢1  (red diamonds)
and block ¢; (blue
circles) regularization
of inverse covariance
matrix, compared to
the full-covariance
0 o = baseline  (horizontal
» green line).

average test log-likelihood
&
a
&

Full Covariance
570 —&— L1 (our method)
—e— Block L-1 (our method)

metabolic pathways @¥ster et al., 2003). We preprocess
the data so that each variable is zero mean and unit variance
across the dataset.

For the block experiments we group genes into 86 dis-
joint sets B, that correspond to known metabolic path-
ways (Forster et al., 2003). We then construct the edge
subsets as follows. We have one blagk. for each pair
Table1: Classification Error Rates on Animals torgega;gl"’vgysg 17; T,V:I/\;hltﬁgrfzrg\zn:\ ggggfafg\gjllgsa;cfi ren-

NEG | Bison Deer Elephant Giraffe Llama Rhino 4 T .

7. [ 56% 229% 1.3% 50% 40.0%33% each pair of genes j in the same pathway. That is, we
Block | 1.1% 0% 0% 3.0% 355% 33% apply block?; regularization between groups of genes in
Full |10.0% 1.1% 2.5% 6.0% 41.1% 10.0% different blocks and standafd regularization between in-
Pos | Bison Deer Elephant Giraffe Llama Rhino  dividual genes within the same block. For each blsgk

2 1.2% 35.3% 1.2% 0% 3.6% 0% W in ). wherel i hared r larization
Block | 1.1% 29.1% 12% 0% 0% 0% e again seby, = X-|Sx| wherel is a shared regularizatio

Ful | 24% 403% 13% 0% 1.9% 0% parameter.

) L We conducted 5-fold cross-validation on the dataset. On
see that the standaf¢regularized objective almostalways o1, fold we use the training set to estimate the covariance

outperforms the full inverse covariance, and that the block, vy and compute the log-likelihood for each instance in
£1-regularized likelihood consistently and significantlyt-ou the test set. We report the average log-likelihood over the
performs both other methods. 5 folds. We baseline our method by first estimating the
The block regularized covariance selection can also be vifull covariance matrix. Since the number of data samples
sualized as in Fig. 3. In the figure, we display the spar{174) is significantly smaller than the number of variables
sity (i.e. the edges in the associated MRF) of the block667), we again use cross-validated Tikhonov regulariza-
inverse covariance learned for a llama outline as we varyion as previously described to give an estimateXoie

the penalty term. We can see that generally, the articulatedompare our results against the best (highest log-liketiho
parts (legs, head, tail, body) have edges between thenon test) Tikhonov regularized covariance.

selves before edges between parts; intuitively, the oati gy 4 shows the performance of our methods compared to
ships within articulated parts, such as the head or the legg,q hageline. The results clearly illustrate that the sgyars

capture the shape of the part and are likely to be more ing,y,cingy, -regularized objective outperforms the baseline,
formative for density estimation of the shape distribution,, e the blocke, -regularized penalties give further bene-
than long range interactions such as the head’s position iBts in terms of log-likelihood.

relation to the back right leg.

Figure 3: Different sparsity structures learned on blocked llama
shape data.

' nclusion
54 GeneExpression Data 6 Conclusio

We considered a data set that measures the mRNA eX? this work, we have presented new methods for finding
pression levels of the 6152 genesSncerevisiae (baker's sparse inverse covariance matrices and thereby for select-
yeast), measured under various environmental stress cofftd €dge structures for Gaussian MRFs. The methods we
ditions (Gasch et al., 2000). The expression level of thdresent are significantly faster than prior work, and they

genes can be modeled as random variables and each eng}e_neralize straightforwardly to learning more complidate

iment as a data sample. Some of the expression data wagUctures than has been previously possible. We also pro-
ide compelling experimental results on two real-world

missing and we used a standard nearest-neighbor method Y

impute the missing values (Troyanskaya et al., 2001). We “A small number of genes that participate in more than one
restricted the dataset to the 667 genes involved in knowmpathway were placed into individual sets of 1 gene each.



data sets demonstrating the benefits of this approach fddempster, A. P. (1972). Covariance selectidBiometrics, 28,
both density estimation and classification. 157-175.

Our work suggests the promise of projected gradient methPo, C. B., Foo, C.-S., & Ng, A. Y. (2007). Efficient multiple
ods for othert,-regularized problems by optimization in  hyperparameter learning for log-linear modefgeural Infor-
the dual space, as the duals of these problems often have Mion Processing Systems 21.
simple/,, constraints to which it is trivial to project. How- Dobra, A., Hans, C., Jones, B., Nevins, J., Yao, G., & West, M.
ever, this approach currently relies on the ability to effi- (2004). Sparse graphical models for exploring gene expression
ciently recover the primal variables from the dual varigble ~ data.Journal of Multivariate Analysis, 90, 196-212.
making its general application an open problem. Anotheiy e J. Shalev-Shwartz, S., Singer, Y., & Chandra, T. (2008).
interesting direction for future work is the constructiodn o Efficient projections onto thé;-ball for learning in high di-
methods for intelligently setting the penalty parameters mensions. Proceedings of the 25" International Conference
This could certainly lead to more accurate structure recov- ©On Machine Learning.
eries, and recent work by Do et al. (2007) demonstrates thgyster J.. Famili, 1., Fu, P., & Palsson, B. O. (2003). Genome-
promise of hyperparameter learning in log-linear models; scale reconstruction of the saccharomyces cerevisiae metabolic
this might be extended to more general problems such as network. Genome Research, 13, 244-253.
structure learning. Our.wo.rk demonstrates the benefit 0I:riedman, J., Hastie, T., & Tibshirani, R. (2007). Sparse inverse
block-structured regularization. However, the blocks Mus  .oyariance estimation with the graphical las&ostatics, 1
currently be selected by hand and cannot overlap. Au- 10.
tomatically learning the block structure would be a very _

Gasch, A., Spellman, P., Kao, C., Carmel-Harel, O., Eisen, M.,

useful extension to our work, both for_ improved perfo_r- Storz, G., Botstein, D., & Brown, P. (2000). Genomic expres-
mance and for the explanatory power it gives beyond in-  gjon program in the response of yeast cells to environmental
dividual edge structures. Finally;-regularized learning changesMolecular Biology of the Cell, 11, 4241-4257.

has recently been demonstrated successfully for discrete | _

MRFs (Lee et al., 2006; Wainwright et al., 2007). It Lauritzen, S. L. (1996)Graphical models. Clarendon Press.
would be interesting to see whether efficient projection-Lee, S.-I1., Ganapathi, V., & Koller, D. (2006). Efficient structure
based methods such as ours can be applied to richer settingdearning of Markov networks using -regularization. Neural

that involve discrete variables or non-linear continugus i !nformation Processing Systems.

teractions. Levitin, E. S., & Polyak, B. T. (1966). Constrained minimiza-
tion problems.USSR Computational Math and Mathematical
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