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Abstract

Gaussian Markov random fields (GMRFs) are
useful in a broad range of applications. In this
paper we tackle the problem of learning a sparse
GMRF in a high-dimensional space. Our ap-
proach uses theℓ1-norm as a regularization on
the inverse covariance matrix. We utilize a novel
projected gradient method, which is faster than
previous methods in practice and equal to the
best performing of these in asymptotic complex-
ity. We also extend theℓ1-regularized objective
to the problem of sparsifying entire blocks within
the inverse covariance matrix. Our methods
generalize fairly easily to this case, while other
methods do not. We demonstrate that our exten-
sions give better generalization performance on
two real domains—biological network analysis
and a 2D-shape modeling image task.

1 Introduction
A key challenge in graphical models is learning model
structure and variable independencies from data. We con-
sider this problem in the context of Gaussian distributions
defined over undirected graphs, or Gaussian Markov Ran-
dom Fields (GMRFs). GMRFs are an important class of
graphical models that have found applications in a wide
range of areas including oceanography, image denoising,
speech recognition, and FMRI (Willsky, 2002; Bilmes,
2000). In a GMRF, independencies—edges absent from the
network—correspond to zero entries in the inverse covari-
ance matrixK (Lauritzen, 1996); that is, the GMRF has an
edge between variablesi and j if and only if Kij 6= 0.
Thus, learning a sparse GMRF corresponds precisely to
learning an inverse covariance with many zero entries.

Sparsity in the inverse covariance matrix has a number of
advantages. First, promoting sparsity when learning from
limited data has been shown to produce robust models that
generalize well to unseen data (Dempster, 1972). Second,
the cost of both exact and approximate inference (e.g., be-
lief propagation message passing (Malioutov et al., 2006))

depends strongly on the density of the GMRF structure.
Finally, the number of parameters that need to be stored
can be an important computational factor in some settings.
These latter issues are particularly relevant in systems, such
as speech recognition (Bilmes, 2000) or tracking (Bar-
Shalom & Fortmann, 1988), that need to achieve real-time
performance. Sparsity can also be beneficial in a knowl-
edge discovery setting, where the structure of the learned
model may provide insight into the relationships between
the variables. For example, sparse Gaussian models have
been successfully used to explore interactions between the
genes in gene expression data (Dobra et al., 2004).

The idea of learning sparse GRMFs goes back to the work
of Dempster (1972) where elements of the inverse covari-
ance matrix are explicitly set to zero and the remaining pa-
rameters learned from data. Other early work used a greedy
forward/backward search over edges in a Gaussian MRF
that quickly became infeasible asn, the dimension of the
problem, grew (Lauritzen, 1996). More recently, Baner-
jee et al. (2006) formulated the problem as one of opti-
mizing a log-likelihood objective regularized with anℓ1-
norm penalty on the entries. This penalty is known (Tib-
shirani, 1996) to push parameters to zero, inducing spar-
sity. (See Section 2 for more details on this and other other
approaches for learning sparse GMRFs.)

In this paper, we present a new algorithm for optimizing the
ℓ1-penalized log-likelihood objective for Gaussian distribu-
tions. Our approach is based on projected gradient meth-
ods originally proposed by Levitin and Polyak (1966). Like
other methods based on this objective, our method exploits
the fact that the objective is tractable and convex, hence
avoiding problems from greedy or heuristic searches. How-
ever, unlike the work of Banerjee et al. (2006), the com-
plexity of our algorithm grows asO(n3) rather thanO(n4)
per iteration. For problems of high dimension, this order-
of-magnitude reduction in complexity can be significant.

We also generalize the sparse inverse covariance problem
to that of estimating an inverse covariance with block spar-
sity. This task corresponds to finding a Gaussian MRF
in which certain groups of edges should all be penalized



together. For example, in a GMRF over genes, we may
want to jointly penalize any interaction between genes in
two pathways; this penalty intuitively tries to reduce inter-
pathway interactions, but once the two pathways are al-
lowed to interact via one pair of genes, the penalty is re-
moved for all other pairs. To our knowledge, this exten-
sion has not been considered elsewhere. Indeed, previous
methods do not naturally handle this setting, whereas our
method handles it easily, with no real increase in compu-
tational cost. We present results demonstrating the value
of the block structure to two distinct applications: learning
networks over genes from gene expression data, and learn-
ing models of the 2D shape of mammals.

2 Background and Related Work

As mentioned above, the literature on estimating covari-
ance matrices from data has a long history. Our work starts
from the formulation of Banerjee et al. (2006) which we
review below. We then compare this approach to several
other recent works.

2.1 ℓ1-Regularized Problem Formulation

We assume that we are given a datasetD =
{x[1], . . . , x[m]} in which the samplesx ∈ D are drawn
from somen-dimensional Gaussian distributionN (µ,Σ).
Given a Gaussian with meanµ and covarianceΣ, the av-
erage log-likelihood (modulo unnecessary constants) forD
with same mean can be written as

log detK − tr(Σ̂K)

whereK = Σ−1 is the inverse covariance matrix for the
model, and̂Σ = 1

m

∑m

i=1(x[i] − µ)T (x[i] − µ) is the em-
pirical covariance of the datasetD. As we discussed, the
sparsity structure in the matrixK defines the structure of
the GMRF corresponding to this Gaussian: a zero entry
Kij corresponds precisely to the absence of an edge be-
tween the variablesi andj. For uniformity of exposition,
we use the matrix terminology and notation in the remain-
der of our discussion.

Following the approach of Banerjee et al., we add sparsity-
promotingℓ1-penalty to the entries of the inverse covari-
ance. We can now formulate the convex optimization prob-
lem for estimating the inverse covariance of our model:

minimize
K≻0

− log det(K) + tr(Σ̂K) +
∑

i,j

λij |Kij |, (1)

where we use the notationA ≻ 0 to indicate that the sym-
metric matrixA is positive definite. Hereλij controls the
sparsity of the solution to (1). As we show in Lemma 1, so
long asλij > 0 for all i 6= j (andλii ≥ 0) the solution
to (1) is unique and positive definite. Furthermore, ifλij is
large enough, we will force all off-diagonal entries ofK to
zero.

It will be instructive now and for later development in the
paper to take the dual of (1). We introduce an auxiliary vari-

ableZ = K and its associated dual variableW ∈ R
n×n,

leading to the Lagrangian

L(K,Z,W ) = − log det(K) + tr(Σ̂K)

+
∑

i,j

λij |Zij | + tr(W (K − Z)).

The above Lagrangian is separable into terms involvingK
and terms involvingZ, which enables us to find the dual.
For the terms involvingZ we have that

inf
Z

∑

ij

λij |Zij | − tr(WZ) =

{

0 if |Wij | ≤ λij

−∞ otherwise.

The infimum overK for the remaining terms can be found
by using∇K log det(K) = K−1 (and assuming that̂Σ +
W ≻ 0) to give

inf
K

[− log det(K)+tr((Σ̂+W )K)] = log det(Σ̂+W )+n

Combining, we get the following dual problem for (1):

maximize log det(Σ̂ + W )
subject to |Wij | ≤ λij ∀i, j.

(2)

The constraint that̂Σ + W ≻ 0 is implicit in the objective
because of the convention thatlog det(X) = −∞ when
X 6≻ 0. We denote the set{W : |Wij | ≤ λij ∀i, j} by Bλ,
which is a box constraint indexed by the tupleλ = (λij).
The duality gap given a dual feasible pointW ∈ Bλ (and
hence the primal pointK = (Σ̂ + W )−1) is

η = tr(Σ̂K) +
∑

ij

λij |Kij | − n.

Based on the dual problem, we prove the following lemma,
which guarantees a solution to problem (1):

Lemma 1. With probability 1, so long as λij > 0 for all
i 6= j and λii ≥ 0, the minimization problem (1) is bounded
below and has a unique optimal point K⋆.

Proof We consider the case whenλii = 0 as Banerjee
et al. (2006) already consider the case whenλii > 0. First,
with probability 1,Σ̂ has non-zero diagonals because it was
generated from a set of data samples. If there is a dual
feasible point for (2), i.e., someW such thatdiag(W ) = 0
and|Wij | ≤ λij , the dual problem has a non-infinite value,
and so the primal is bounded below. Further, if we can
find a dual-feasibleW such that|Wij | < λij (i.e. W is in
the relative interior of the domain), then Slater’s constraint
qualification (Boyd & Vandenberghe, 2004) guarantees a
primal-dual optimal pairK⋆ = (Σ̂ + W ⋆)−1 with zero
duality gap. So we simply show that aW in the relative
interior of the domain exists.

Consider the matrixD = diag(Σ̂) ≻ 0. Forα ∈ [0, 1) we
haveαΣ̂ + (1 − α)D ≻ 0. But, for anyα, we have that
diag(αΣ̂ + (1 − α)D) = diag(Σ̂). Thus, we choose

W = αΣ̂ + (1 − α) diag(Σ̂) − Σ̂, (3)



which has zeros on the diagonal, and forα close enough to
1 will have|Wij | < λij . Further,

Σ̂ + W = αΣ̂ + (1 − α) diag(Σ̂) ≻ 0.

ChoosingW as in (3) gives a dual feasible point in the
relative interior of the domain.W ⋆ is unique by the strong
convexity oflog det over the positive definite cone.

If we can find the maximizingW ⋆ for (2), we can also
easily calculate the sparsity forK⋆ = (Σ̂ + W ⋆)−1 by
the complementarity conditions onWij andKij (Boyd &
Vandenberghe, 2004). Specifically, if|W ⋆

ij | < λij , then
K⋆

ij = 0. Lastly, as shown in the analysis of the so-called
maximum determinant completion problem (see Boyd and
Vandenberghe (2004)), if we constrain only the diagonal
elements ofW and do not constrain its off-diagonals, then
maximizinglog det(Σ̂+W ) will drive the off-diagonal en-
tries ofK to 0; as such, choosingλij = |Σ̂ij | forces com-
plete sparsity inK and we find an MRF with no edges,
i.e., all the variables are independent. Thus, when solving
(1), we have a natural upper bound onλ beyond which no
additional sparsity can be gained.1

2.2 Prior Work

One recent approach for learning sparse GMRFs is to focus
on learning the set of neighbors for a particular variable by
regressing that variable against the remaining variables in
the network with anℓ1-penalty to promote sparsity (Mein-
shausen & B̈uhlmann, 2006). An alternative approach, first
presented by Banerjee et al. (2006), is to solve the opti-
mization problem (2). It is convex and can be solved using
interior point methods inO(n6 log(1/ε)) time to a desired
accuracyε, however, this becomes infeasible for even mod-
eraten. Banerjee et al.’s approach was to solve problem (2)
iteratively, column by column, as a sequence of QPs. That
is, they defineU = Σ̂ + W and partitionU andΣ̂ as

U =

[

U11 u12

uT
12 u22

]

Σ̂ =

[

S11 s12

sT
12 s22

]

.

They then solve a sequence of box-constrained QPs (swap-
ping rows ofU to get all the rows), each iteration setting
û12 = argminy

{

yT U−1
11 y | ‖y − s12‖ ≤ λ

}

, updatingU
and W appropriately. This method takesO(Tn4) time,
whereT is the number of passes through the columns of
the matrixU .

An alternative to the box-constrained QP above (its dual) is
to minimize a sequence of re-weighted LASSO problems.
In work developed in parallel and independently of our pa-
per, Friedman et al. (2007) use this to solve problem (2).
Their method enjoys better performance (aroundO(Tn3),
though no analysis is given) than Banerjee et al.’s, which is
similar to the methods we develop in our paper. They, how-
ever, explicitly rely onλii being positive to get a feasible

1Presumably one could regularize the diagonals further,
though this seems of little practical use.

starting point when the number of samples is less than the
dimension, which we do not.

We have already mentioned Meinshausen and Bühlmann’s
work (2006) regressing single variables against one an-
other. The advantage of their approach is in its efficiency,
as solvingn regressions each withn variables can be done
very quickly, i.e., in the time it takes to do one pass over all
the columns with LASSO. However, they do not directly
obtain a maximum likelihood estimate from their method,
only the structure of the graph.

The SPICE algorithm of Rothman et al. (2007) solves (1)
whenλii = 0 (i.e., applying anℓ1-penalty only to off diag-
onal elements of the inverse covariance). The advantages
of this penalty are many: Rothman et al. prove that such a
setting of the regularization terms is consistent so that the
solution to (1) approaches the true inverse covariance as
the number of data samples increases, and they give experi-
ments showing that not penalizing the diagonal consistently
learns model structure more accurately than does regular-
izing each entry ofK. Further, Meinshausen (2005) gives
simple conditions under which penalizing the on-diagonal
entries ofK in (1) gives thewrong inverse covariance, even
in the limit of infinite data. These results underscore the im-
portance of Lemma 1, which gives a dual-feasible starting
point even whenλii = 0. To our knowledge, this has not
been noted before this work.

The disadvantage of the SPICE algorithm is that, like
Banerjee et al.’s algorithm, it performs coordinate-wise
updates (though it uses the columns of the Cholesky de-
composition ofK). It repeatedly iterates through all the
columns, solvingn O(n3) regressions at every step, giving
it a time complexity again ofO(Tn4). Further, Rothman
et al.’s algorithm has no explicit way to check convergence,
as it does not generate dual-feasible points (which our algo-
rithms do), and they rely on truncation of near-zero values
rather than explicit conditions for sparsity in the inverse
covariance (such as complementarity of primal-dual vari-
ables). The algorithm they propose is also somewhat com-
plicated.

3 Projected Gradient Method
We propose a projected gradient method for solving the
dual problem (2). Projected gradient algorithms minimize
an objectivef(x) subject to the constraint thatx ∈ S for
some convex setS.2 They do this by iteratively updating

x := ΠS(x + t∇f(x))

wheret is a step size andΠS(z) = argminy{‖z−y‖2 | y ∈
S} is the Euclidean projection onto setS (Bertsekas, 1976).
First order projected gradient algorithms are effective when
second order methods are infeasible because of the dimen-
sion of the problem. As the dimensions of our problems

2In our caseS is the set ofn × n matrices in the boxBλ.



Algorithm 1 Maximize log det(Σ̂ + W ) subject toW ∈
Bλ = {W | |Wij | ≤ λij}. Given empirical covariance
Σ̂ � 0, λij , duality gap stopping criterionǫ, andW such
thatW ∈ Bλ, Σ̂ + W ≻ 0, andWii = λii.
1: repeat
2: Compute unconstrained gradient
3: G := (Σ̂ + W )−1

4: Zero components of gradient which would result in
constraint violation

5: Gii := 0
6: Gij := 0 for all Wij = λij andGij > 0
7: Gij := 0 for all Wij = −λij andGij < 0
8: Perform line search
9: t :≈ argmaxt log det(Σ̂ + ΠBλ

(W + tG))
10: Update and project
11: W := ΠBλ

(W + tG)

12: K := (Σ̂ + W )−1

13: Compute duality gap
14: η = tr(Σ̂K) +

∑

ij λij |Kij | − n
15: until (η < ǫ) or maximum iterations exceeded
16: return K

Algorithm 2 Line search to find feasiblet for log det(Σ̂ +

W + tG) givenf0 = log det(Σ̂ + W ).

1: t := tr((Σ̂+W )−1G)

tr((Σ̂+W )−1G(Σ̂+W )−1G)

2: while log det
(

Σ̂ + ΠBλ
(W + tG)

)

≤ f0 do

3: t := t/2
4: end while

often exceedn = 1000, giving more than 500,000 differ-
ent parameters, this makes projected gradient methods a
reasonable choice.

The projected gradient method for our problem is shown
in Algorithm 1. The unconstrained gradient of the dual
objective function (2) isG = (Σ̂ + W )−1. We perform
a line search to find the step sizet that approximately
gives the greatest increase to the objective. This search
needs to guarantee that the estimated covarianceΣ̂ + W
is positive definite, which it does because we assume that
log detX = −∞ for X 6≻ 0. We can guarantee that the
initial Σ̂ + W ≻ 0, becausêΣ � 0, and we can simply
initialize Wii = λii and the rest ofW via Lemma 1 (this
initialization is optimal for the diagonal elements, so we
do not modify them through the course of the algorithm).
The projection of the gradient appears in two places. First,
we immediately zero out some entries of the gradient when
Wij is at the boundary andGij would pushWij outside
Bλ. Second, during the line search, in each step we project
the gradient onto the box-constraint|Wij | ≤ λij via the op-
erationΠBλ

(W + tG), which simply sets any entry> λij

to λij (and likewise for−λij).

For the simple box-constrained projections, because we
can immediately zero out many entries of the gradientG
and still have a descent direction (see lines 5 through 7
of Algorithm 1, which are not strictly necessary but im-
prove the performance of the line search), a simple heuris-
tic line search based on the second-order approximation to
log det performs very well. The second order expansion
of the log-determinant function around a pointX (Boyd
& Vandenberghe, 2004) is given bylog det(X + ∆X) ≈
log det(X) + tr(X−1∆X) − 1

2 tr(X−1∆XX−1∆X).
Thus, given the descent directionG, we approximate
log det(Σ̂ + W + tG) by

log det(Σ̂ + W ) + t tr((Σ̂ + W )−1G)

− 1
2 t2 tr((Σ̂ + W )−1G(Σ̂ + W )−1G)

and perform the line search of Algorithm 2. Convergence
is guaranteed because the iterates forW form a sequence in
a compact spaceBλ andlog det(Σ̂+W ) is always increas-
ing. If the line search cannot return a satisfyingt, then no
improvement can be made in the projected descent direc-
tion, so standard arguments by KKT conditions for a dif-
ferentiable convex function guarantee that we have reached
the optimum.

4 Structure Extensions
We can extend the basic problem of (1) to cases in which
we are interested in sparsity not just between single vari-
ables but between entire blocks of variables. In many
problem domains, variables can be naturally grouped into
blocks. For example, we might try to model a 2D shape
made up of articulated objects (such as the outline of an an-
imal) in which we want to regularize interactions between
object parts (such as legs, body, head, and tail). Land-
marks along the contour of an animal’s head can naturally
be grouped together, as these landmarks move collectively
as the animal moves through different articulated forms. In
modeling gene networks, we may want to encode the intu-
ition that interactions happen at the level of pathways, i.e.,
either two pathways interact, in which case multiple genes
can be involved, or they do not interact at all. Block regu-
larization might also arise in the context of learning multi-
resolution models constrained so that only variables within
specific resolution levels interact (Willsky, 2002).

In the block regularization case, we let the entries in our
inverse covariance matrix be divided intop < n2 disjoint
subsetsS1, . . . , Sp (the disjointness assumption is essential
to our method, as we see below). We can find the depen-
dencies between the subsets by solving the following block
ℓ1-regularized log likelihood problem:

minimize − log det(K) + tr(Σ̂K) (4)

+
∑

k

λk max {|Kij | : (i, j) ∈ Sk} .

The subsetSk encodes a set of interactions that, as soon as
one of the interactions in the set exists, there is no reason



to penalize any of the other interactions. For example, in
the 2D shape model, the subsetsSk may be constructed as
Sqr = Bq × Br where theBq andBr represent the set of
variables belonging to theqth andrth articulated body part,
respectively.

We can perform a similar derivation to the one in Sec-
tion 2.1 to find the dual problem for (4):

maximize log det(Σ̂ + W ) (5)

subject to
∑

(i,j)∈Sk
|Wij | ≤ λk, for k = 1, . . . , p.

To apply a projected gradient method to (5), we need to
project to the constraints

∑

(i,j)∈Sk
|Wij | ≤ λk. Recent

work by Duchi et al. (2008) provides such a method, giving
a randomized linear time algorithm to project a vectorw to
the constraint‖x‖1 ≤ C. The setsSk must be disjoint so
that we can project to each constraint in (5) independently
(and hence efficiently). We refer the reader to their paper
for a description of the actual projection algorithm.

Given the linear time algorithm to project to anℓ1 con-
straint, we can develop anO(n2) expected time (the
same efficiency as the projection toBλ of earlier meth-
ods) method to project to the feasible setS = {W |
∑

(i,j)∈Sk
|Wij | ≤ λk, k = 1, . . . , p}. The method sim-

ply iterates through each of the blocksSk, projectingWij :
(i, j) ∈ Sk to the constraint that

∑

(i,j)∈Sk
|Wij | ≤ λk to

get W ∈ S. With this as a building block, Algorithm 3
maximizes the dual (5). Because the constraint set is more
complicated, making it difficult to make the second order
expansion oflog det accurate for the projected direction,
the algorithm uses Armijo-like line searches as described
by Bertsekas (1976) rather than the simpler line search of
Algorithm 1. If we letg = ∇f(x), the Armijo line search
for a projected gradient maximization method with func-
tion f returns the firstt such that

f(ΠS(x + tg)) ≥ f(x) + α∇f(x)T (ΠS(x + tg) − x)

where t is initialized to 1 and decreased by a multiplier
β < 1 every time the above condition is not satisfied. In
our algorithmt is adaptively chosen to make the line search
converge more quickly (see line 22 of Alg. 3), and setting
0 < α < 1 guarantees convergence of the method.

Previous methods developed for solving the penalized
maximum-likelihood problem for Gaussians are unable to
handle the blockℓ1-penalties of (4). Effectively, batch steps
are needed to handle the more long range block constraints;
the coordinate based methods of Banerjee et al. (2006),
Friedman et al. (2007), and Rothman et al. (2007) cannot
account for more global constraints that tie parameters in
arbitrary columns and rows. Our projected gradient meth-
ods, however, extend to the case of block penalties, with
ease. Further, the added complexity is negligible, as the
entire projection step is stillO(n2), while the expensive
O(n3) step is computing the gradient.

Algorithm 3 Solves (5) given an initialW such thatΣ̂ +
W ≻ 0 and constantsβ andα, 0 < β < 1 and0 < α < 1.
1: t = 1
2: repeat
3: Compute unconstrained gradient
4: G = (Σ̂ + W )−1

5: Compute direction of step
6: D = ΠS(W + tG) − W
7: Compute initial and next objective values
8: f0 = log det(Σ̂ + W )
9: ft = log det(Σ̂ + ΠS(W + tG))

10: Perform backtracking line search
11: while ft < f0 + α tr(DG) do
12: Decrease t, recalculate direction and objective
13: t = β · t
14: D = ΠS(W + tG) − W
15: ft = log det(Σ̂ + ΠS(W + tG))
16: end while
17: Compute next points and duality gap
18: W = ΠS(W + tG)
19: K = (Σ̂ + W )−1

20: η = tr(Σ̂K) +
∑

k λk‖Kij : (i, j) ∈ Sk‖∞ − n
21: Increase t slightly
22: t = t/β
23: until η < ǫ

5 Experimental Results

In this section, we describe our experimental results. We
performed experiments both on synthetic and real data,
gathering timing information as well as calculating log-
likelihood on test data, validating the usefulness of sparse
estimators. This validation seems to have been notably ab-
sent from much of the literature on sparse inverse covari-
ance selection.

5.1 Timing Results

We ran a series of timing experiments for the original prob-
lem from equations (1) and (2) comparing our approach
to that of Banerjee et al. (2006) and Friedman et al.
(2007). To generate data for our timing experiments, we
constructed randomn×n sparse inverse covariance matri-
ces with roughly 20 edges per node. For each such matrix,
we generatedn/3 samples and used them to construct the
empirical covariancêΣ. We selectedλ for the penalty in (1)
so that at solution, the inverse covarianceK had (approx-
imately) the correct number of edges. Our timing experi-
ments were run on a computer with a 1.7Ghz Intel Xeon
32-bit processor and 1.96GB of RAM. The run times to
achieve a duality gap ofǫ = 0.1 are plotted in Fig. 1,
which shows CPU time versus problem size compared to
Banerjee et al.’s and Friedman et al.’s column-wise coordi-
nate ascent algorithms. The results show that our projected
subgradient method outperforms Banerjee et al.’s column-
wise ascent by one to two orders of magnitude on these
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Figure 1: Run
times in log-scale
of the method pre-
sented in this pa-
per versus Baner-
jee et al.’s (Iterated
QP) and Friedman
et al.’s (Graphical
Lasso).

tests. Our method seems to find a solution in roughly half to
two-thirds the time that Friedman et al.’s does, though their
method seems to more easily be optimized when the pri-
mal matrixK becomes sparse. Further, in our experiments
whenΣ̂ was not full rank, Friedman et al.’s method seemed
to have more difficulty maintaining a positive definite so-
lution than did ours, which guarantees positive definiteness
of Σ̂+W throughout. We note that due to the slightly more
complicated projection, the run times of Alg. 3 are roughly
twice those of Alg. 1.

5.2 Synthetic Log Likelihoods

To test the impact of learning sparse structures, we com-
pared ourℓ1-penalized inverse covariance estimation from
(1) to Tikhonov regularized covariance matrices, i.e., se-
lecting the covariance matrix to beΣ = Σ̂ + νI for some
ν > 0, which guarantees the positive-definiteness ofΣ. To
do this, we randomly generated 20 inverse covariance ma-
trices with 50% sparsity and dimensionn = 60. From each
of these, we generated 30 samples for a training set (defin-
ing a covariancêΣ) and 30 samples for a test set. We then
variedν to compute the besttest set log-likelihood achieved
by Tikhonov regularized covariance across allν’s. Fig. 2(a)
shows this best-case test log-likelihood for the Tikhonov
regularized covariance versus the log-likelihood for sparse
covariances matrices output by Algorithm 1 as we sweep
the penalty parameterλ from max(|Σ̂ij |) to 10−3. The
results show that, for appropriate levels of sparsity,ℓ1-
regularized covariance estimation outperforms simple reg-
ularized estimates of the full covariance.

5.3 Mammal 2D Shape Models

Moving on to real data, we aimed to study whether our
blockℓ1 approach achieves better generalization than other
approaches for learning the model. In our first application,
we consider a two-dimensional shape classification task.
Here, we have a series of 60 landmarks, each an(x, y) point
in 2D, defining the outline of a mammal as a vector inR

120.
The mammals are from six classes: bison, deer, elephants,
giraffes, llamas, and rhinos. There are on average 42 ex-
amples from each class, each a hand-labeled outline from a
real image. Our task is to model each animal’s outline as a
Gaussian distribution, learning a meanµ(c) and covariance
Σ(c) for each of the six animal classesc.

We used and compared the standard sparsifying objective
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Figure 2: Log-likelihood results: (a) for synthetic data, compar-
ing ℓ1-penalized inverse covariance to (best-case) full covariance;
(b) for 2D shape-recognition test data, comparing the block versus
the non-block method.

(1) and the block-penalized objective (4) to learn sparse in-
verse covariancesK(c). For the block penalties, we manu-
ally chose the articulated body partsBq as the head, neck,
stomach, each leg, back, and tail. The blocksSk were then
Sk = Bq × Br for all pairsq andr (includingq = r), and
the penaltyλk for Sk was set so thatλk ∝ |Sk|.3

We measure the performance of the competing methods in
two ways: by test set log-likelihood and by performance
on a classification task. In the log-likelihood case, we per-
formed five-fold cross validation of the training data and
swept theλ penalties for both (1) and (4), ranging from
full-sparsity to no-sparsity solutions for the inverse covari-
anceK. We set the meanµ(c) for each class simply as the
training set mean. As a baseline, we also chose a “full” co-
variance matrix̂Σ + νI for each class using the Tikhonov
regularization technique described above. As above, we se-
lectedν to give the best test log-likelihood for each class in
our cross-validation procedure. The block sparsity led to
moderate improvements in the test likelihood, which can
be seen in Fig. 2(b); we note that we do not plot the full
covariance result, as its best average log-likelihood on test
data is -173.22, which is off the bottom of the plot. We
see thatℓ1-regularization significantly improves general-
ization, and that our block approach provides yet an ad-
ditional improvement.

Other benefits of the block structured regularization can be
seen in a classification task. In this case, for each of the
three methods (sparse, block sparse, and Tikhonov regu-
larized) and for each class we chose the inverse covariance
K(c) that maximized the Gaussian log-likelihood on a held-
out validation set. The task is to classify examples from a
test set, that is, to assign a labelĉ to a given vectorv ∈ R

120

from the test set. We assign the label forv simply as the
class that has the maximum likelihood forv:

ĉ = argmax
c

{

log detK(c) − (v − µ(c))T K(c)(v − µ(c))
}

.

The false positive and false negative error rates over ten
different testing runs for each class are in Table 1. We

3Having the penalties on the blocks correspond to their sizes
overcomes the tendency for larger blocks to have edges since they
can more easily affect the log-likelihood.
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Figure 3: Different sparsity structures learned on blocked llama
shape data.

Table 1: Classification Error Rates on Animals
NEG Bison Deer Elephant Giraffe Llama Rhino
ℓ1 5.6% 2.2% 1.3% 5.0% 40.0%3.3%

Block 1.1% 0% 0% 3.0% 35.5% 3.3 %
Full 10.0% 1.1% 2.5% 6.0% 41.1% 10.0%
POS Bison Deer Elephant Giraffe Llama Rhino
ℓ1 1.2% 35.3% 1.2% 0% 3.6% 0%

Block 1.1% 29.1% 1.2% 0% 0% 0%
Full 2.4% 40.3% 1.3% 0% 1.9% 0%

see that the standardℓ1-regularized objective almost always
outperforms the full inverse covariance, and that the block
ℓ1-regularized likelihood consistently and significantly out-
performs both other methods.

The block regularized covariance selection can also be vi-
sualized as in Fig. 3. In the figure, we display the spar-
sity (i.e. the edges in the associated MRF) of the block
inverse covariance learned for a llama outline as we vary
the penalty term. We can see that generally, the articulated
parts (legs, head, tail, body) have edges between them-
selves before edges between parts; intuitively, the relation-
ships within articulated parts, such as the head or the legs,
capture the shape of the part and are likely to be more in-
formative for density estimation of the shape distribution
than long range interactions such as the head’s position in
relation to the back right leg.

5.4 Gene Expression Data

We considered a data set that measures the mRNA ex-
pression levels of the 6152 genes inS. cerevisiae (baker’s
yeast), measured under various environmental stress con-
ditions (Gasch et al., 2000). The expression level of the
genes can be modeled as random variables and each exper-
iment as a data sample. Some of the expression data was
missing and we used a standard nearest-neighbor method to
impute the missing values (Troyanskaya et al., 2001). We
restricted the dataset to the 667 genes involved in known
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Figure 4: Average
test log-likelihood
on Gasch dataset for
ℓ1 (red diamonds)
and block ℓ1 (blue
circles) regularization
of inverse covariance
matrix, compared to
the full-covariance
baseline (horizontal
green line).

metabolic pathways (F̈orster et al., 2003). We preprocess
the data so that each variable is zero mean and unit variance
across the dataset.

For the block experiments we group genes into 86 dis-
joint setsBq that correspond to known metabolic path-
ways (F̈orster et al., 2003).4 We then construct the edge
subsets as follows. We have one blockSqr for each pair
of pathwaysq 6= r, which contains all the covariance en-
tries forBq × Br. We then have a separate blockSij for
each pair of genesi, j in the same pathway. That is, we
apply blockℓ1 regularization between groups of genes in
different blocks and standardℓ1 regularization between in-
dividual genes within the same block. For each blockSk

we again setλk = λ·|Sk| whereλ is a shared regularization
parameter.

We conducted 5-fold cross-validation on the dataset. On
each fold we use the training set to estimate the covariance
matrix and compute the log-likelihood for each instance in
the test set. We report the average log-likelihood over the
5 folds. We baseline our method by first estimating the
full covariance matrix. Since the number of data samples
(174) is significantly smaller than the number of variables
(667), we again use cross-validated Tikhonov regulariza-
tion as previously described to give an estimate forΣ. We
compare our results against the best (highest log-likelihood
on test) Tikhonov regularized covariance.

Fig. 4 shows the performance of our methods compared to
the baseline. The results clearly illustrate that the sparsity
inducingℓ1-regularized objective outperforms the baseline,
while the blockℓ1-regularized penalties give further bene-
fits in terms of log-likelihood.

6 Conclusion

In this work, we have presented new methods for finding
sparse inverse covariance matrices and thereby for select-
ing edge structures for Gaussian MRFs. The methods we
present are significantly faster than prior work, and they
generalize straightforwardly to learning more complicated
structures than has been previously possible. We also pro-
vide compelling experimental results on two real-world

4A small number of genes that participate in more than one
pathway were placed into individual sets of 1 gene each.



data sets demonstrating the benefits of this approach for
both density estimation and classification.

Our work suggests the promise of projected gradient meth-
ods for otherℓ1-regularized problems by optimization in
the dual space, as the duals of these problems often have
simpleℓ∞ constraints to which it is trivial to project. How-
ever, this approach currently relies on the ability to effi-
ciently recover the primal variables from the dual variables,
making its general application an open problem. Another
interesting direction for future work is the construction of
methods for intelligently setting the penalty parametersλ.
This could certainly lead to more accurate structure recov-
eries, and recent work by Do et al. (2007) demonstrates the
promise of hyperparameter learning in log-linear models;
this might be extended to more general problems such as
structure learning. Our work demonstrates the benefit of
block-structured regularization. However, the blocks must
currently be selected by hand and cannot overlap. Au-
tomatically learning the block structure would be a very
useful extension to our work, both for improved perfor-
mance and for the explanatory power it gives beyond in-
dividual edge structures. Finally,ℓ1-regularized learning
has recently been demonstrated successfully for discrete
MRFs (Lee et al., 2006; Wainwright et al., 2007). It
would be interesting to see whether efficient projection-
based methods such as ours can be applied to richer settings
that involve discrete variables or non-linear continuous in-
teractions.
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