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Abstract

A graphical multiagent model (GMM) repre-
sents a joint distribution over the behavior
of a set of agents. One source of knowledge
about agents' behavior may come from game-
theoretic analysis, as captured by several
graphical game representations developed in
recent years. GMMs generalize this approach
to express arbitrary distributions, based on
game descriptions or other sources of knowl-
edge bearing on beliefs about agent behavior.
To illustrate the �exibility of GMMs, we ex-
hibit game-derived models that allow proba-
bilistic deviation from equilibrium, as well as
models based on heuristic action choice. We
investigate three di�erent methods of inte-
grating these models into a single model rep-
resenting the combined knowledge sources.
To evaluate the predictive performance of
the combined model, we treat as actual out-
come the behavior produced by a reinforce-
ment learning process. We �nd that com-
bining the two knowledge sources, using any
of the methods, provides better predictions
than either source alone. Among the com-
bination methods, mixing data outperforms
the opinion pool and direct update methods
investigated in this empirical trial.

1 INTRODUCTION

Graphical models provide a compact representation for
domains with decomposable structure, with concomi-
tant computational advantages. Multiagent scenarios
may be particularly amenable to decomposition, to the
extent that interactions among the agents exhibit lo-
calized e�ects. The idea of exploiting conditional in-
dependence among the e�ects of agents' decisions was
central to the multiagent in�uence diagram (MAID)

framework developed by Koller and Milch (2003). This
observation was also a driving motivation for graphical
game models, �rst introduced by Kearns et al. (2001),
and subsequently examined and extended in several
research e�orts (Kearns, 2007).

In the basic graphical game approach, the model is
a factored representation of a normal-form game, and
special-purpose algorithms operate on this represen-
tation to identify approximate or exact Nash equi-
libria. Daskalakis and Papadimitriou (2006) demon-
strated how to map a graphical game to a Markov
random �eld (MRF), assigning high potential to con-
�gurations where an agent plays a best response to its
neighbors. They showed that the maximum a poste-
riori con�gurations of the MRF correspond to pure-
strategy Nash equilibria (PSNE) of the game. This
approach enables the exploitation of statistical infer-
ence tools for game-theoretic computation, including
the full repertoire of graphical model algorithms.

We build on these works to introduce graphical mul-

tiagent models (GMMs), which are simply graphical
models where the joint probability distribution is in-
terpreted as an uncertain belief (e.g., a prediction)
about the agents' play. For instance, the Daskalakis
and Papadimitriou mapping can be viewed as a GMM
where we believe that the agents will play a PSNE
if one exists. This is of course just one candidate for
belief based on game-theoretic analysis. When reason-
ing about strategies to play, or designing a mechanism
(which induces a game for other agents), we may wish
to adopt alternative bases for forming beliefs about the
agents' play (Vorobeychik and Wellman, 2006). The
GMM framework supports such decision making, and
moreover, allows that beliefs may be based on vari-
ant solution concepts, models of bounded rationality
or equilibrium selection, or for that matter knowledge
that has nothing to do with game-theoretic analysis.
At this level, our motivation shares the spirit of the
network of in�uence diagrams formalism of Gal and Pf-
e�er (2008), which extends MAIDs to incorporate non-



maximizing models of behavior. It also aligns with the
goal of Wolpert's information-theoretic framework for
modeling bounded rationality in game play (Wolpert,
2006).

In this paper, we illustrate the �exibility of GMMs by
showing how to construct plausible multiagent mod-
els using quite di�erent sources of belief about agent
play. One example model is based on the game form,
and another based on heuristic assumptions of behav-
ior. In both, we assume that the graphical structure
representing interactions among players in the game is
known. We then introduce and test three approaches
to integrate these knowledge sources into a combined
model. To evaluate the results, we posit that actual
play is generated by agents who start to play heuristi-
cally, then update their behavior over repeated interac-
tions through a reinforcement learning (RL) process.
Thus, the task we set up is to predict the outcome
of a RL regime. More precisely, we seek to compute a
reasonable estimation of the joint probability distribu-
tion of the agents' play. Intuitively, knowledge about
the heuristic starting point is relevant, as is knowledge
of strategically stable policies (game-theoretic equilib-
ria), but neither directly captures nor necessarily cor-
responds to the RL outcome. We �nd experimentally
that in fact the two knowledge sources are complemen-
tary, as the combined model outperforms either alone.
Our investigation further provides support for one par-
ticular combination approach, based on mixing data.

We begin with formal de�nitions and speci�cations
of the GMM framework in Section 2. In Section 3,
we present an example multiagent domain, the Inter-
net industry partnership network, and construct two
plausible models based on di�erent knowledge sources.
Section 4 details some alternative combination meth-
ods. We follow with an empirical study in Section 5,
designed to evaluate the performance of the respec-
tive models and their combinations. We conclude the
paper with some observations on these results.

2 GRAPHICAL MULTIAGENT

MODELS

Consider a multiagent scenario with n players, where
each player i ∈ {1, . . . , n} chooses an action (or strat-

egy) si, from its strategy domain, Si. The outcome
is a joint action, or strategy pro�le, s, designating
the strategy choice of all players. A GMM G for
this scenario is a graphical model, G = (V,E, S, π),
with vertices V = {v1, . . . , vn} corresponding to the
agents (we refer to vi and i interchangeably), and edges
(i, j) ∈ E indicating a local interaction between i and
j. The graph de�nes for each agent a neighborhood,
Ni = {j | (i, j) ∈ E}∪{i}, including i and its neighbors

N−i = Ni\{i}. Each neighborhood i is associated with
a potential function πi(sNi

) : Πj∈Ni
Sj → R. Intu-

itively a local con�guration of strategies with a higher
potential is more likely to be part of the global out-
come than one with lower potential. As in graphical
games, the size of the GMM description is exponen-
tial only in the size of local neighborhoods rather than
in the total number of players. These local potentials
de�ne the joint probability of a global con�guration s,

Pr(s) =
Πiπi(sNi

)
Z

, (1)

where Z is a normalization term.

One source of potential functions is a description of the
game played by the n agents. Let G be a game with
agents and strategy sets as de�ned for the GMM G.
Let us further assume that G is a graphical game, such
that agent i's payo� depends only on sNi

: its strategy
and those of its neighbors. Formally, i's payo� is de-
�ned by a utility function, ui : Πj∈NiSj → R. For ex-
ample, Daskalakis and Papadimitriou (2006) de�ned a
binary potential function, associating a high value for
con�gurations where each agent's strategy choice is a
best response to its neighbors (i.e., maximizes payo�s
given sN−i

), and a low value for all other con�gura-
tions.

A natural generalization of this approach would
smooth out the binary distinction, assigning interme-
diate potentials based on the degree to which agents
deviate from their best response. We may not wish to
assume that agents play best responses with certainty,
as they may not be perfectly rational, or our attribu-
tions of payo� functions may be inexact. For a given
payo� model, let εi(sNi) denote i's regret function, rep-
resenting the maximum gain i can obtain through uni-
laterally reconsidering its own strategy si given sN−i

,

εi(sNi
) = max

s′i∈Si

ui(s′i, sN−i
)− ui(sNi

).

Intuitively, we expect that high-regret pro�les are less
likely to be played (all else equal), since as regret in-
creases agents are more apt to recognize and select the
better alternatives. We can capture this intuition in a
regret potential,

πi(sNi
) = e−εi(sNi

)/Ti , (2)

where Ti, the temperature parameter, provides a way
to calibrate our association between regret and relative
likelihood. Greater values of Ti accord more likelihood
to agents making less than perfectly rational decisions.
For simplicity in notation below, we also de�ne λi =
1
Ti
, and λ the vector of λi.

Let reG denote a GMM employing the regret poten-
tial function. In the current study, we consider the



regret GMM reG as one plausible form of predictive
model. We also consider models that are not based di-
rectly on payo�s in an associated game. In particular,
we construct for our particular example a rule-based
GMM, hG , encoding heuristic assumptions of agents'
behavior.

3 EXAMPLE: INTERNET

INDUSTRY PARTNERSHIPS

We illustrate the GMM framework and motivate the
problem of combining knowledge sources through an
example multiagent scenario. In the Internet industry

partnership domain,1 companies must decide whether
to retain (s = 1) or upgrade (s = 2) their current
technology. The payo� functions in G can be mapped
into G's potential functions in several di�erent ways.
The payo� for each strategy depends on the choices
of other companies to which they are related through
some kind of partnership�their neighbors in the inter-
action graph. For example, the bene�ts of upgrading
may be larger when one's partners also upgrade, since
keeping their technologies synchronized enhances com-
patibility.

3.1 GAME DEFINITION

We construct our example scenario using a fragment
of the partnership network consisting of 10 represen-
tative companies, as depicted in Figure 1. Each node
represents a company, which we characterize by three
parameters: (1) size class, z; (2) sector, t: either com-
merce, infrastructure, or content; and (3) change co-
e�cient, ch ∈ [0, 1], representing the intrinsic adapt-
ability of the company's technology. The study by
Krebs (2002) provides sector and a rough order of size;
the change coe�cient is assigned by us in an arbitrary
manner. Although somewhat contrived, the scenario
speci�cation serves our purpose of demonstrating some
capabilities of the GMM approach.

The payo� function, u, de�nes the value of retain-
ing or upgrading technology, given the actions of a
�rm's neighboring companies and the parameters de-
scribing these companies. Qualitatively, payo� is in-
creased by agreement with neighbors, where larger
neighbors from the same sector are relatively more im-
portant. Let us �rst introduce an intermediate value
wij for each connected pair of companies, re�ecting
the strength of i and j's partnership:

wij(si, sj) = (zi + zj)
(

1 +
yij

2It + 41−It

)Is

, (3)

1The example is inspired by the network model of Krebs
(2002), cited by Kearns (2002).

Figure 1: Part of the Internet industry partnership
network, from Krebs (2002).

where yij ∼ U [0, 1] is a random variable, and Is and
It are indicator functions representing agreement in
strategy and technology sector. Is = 1 if si = sj , and
0 otherwise; It = 1 if ti = tj , and 0 otherwise. The
intuition for (3) is that the mutual in�uence between
two �rms increases with their size, agreement in ac-
tion, and sector commonality. We also de�ne function
φ(chi, si) to compare i's action to its change parameter
chi. Speci�cally, φ's value is positive if si is upgrade
(retain) and chi is greater (smaller) than 0.5. The in-
terpretation is that a value greater (smaller) than 0.5
for chi implies that i is �exible (in�exible) with respect
to technology change.

φ(chi, si) =
{

si

2 − chi if si

2 − chi < 0.5
0.5− si

2 + chi otherwise

Finally, the overall payo� combines the pairwise part-
nership weights, further adjusted by the company's
�exibility in upgrading its technology.

ui(aNi
) = (1 + yiφ(chi, si))

∑
j

wij(si, sj),

with yi ∼ U [0, 1].

3.2 GMM CONSTRUCTIONS

Given the payo� function and the game de�nition
above, we can generate a regret potential function (2)
in a straightforward manner, parametrized by temper-
ature. This potential function in turn de�nes a regret
GMM, reG .

Our heuristic rule-based model, hM , in contrast, is
speci�ed without direct reference to the payo� func-
tion. In this model, each company independently ap-
plies a local heuristic to stochastically choose its ac-
tion. Speci�cally, agent i changes its technology with



probability pChange(i), where

pChange(i) = 0.5(1− 10−3)|Ni|(1− 10−3zi).

The intuition behind this heuristic is that the more
partners (|Ni| − 1) a company has and the greater
its size zi, the less likely it is to change. Given the
pChange values, it is straightforward to de�ne a po-
tential function for the GMM hG such that the out-
come distribution is the same as generated by applying
the rule independently for each company. As a result,
hG 's potential πi is a function of only si instead of
sNi

.

The two GMMs, reG and hG , are based on qualita-
tively di�erent sources of knowledge. If we believe that
agents are essentially rational and aware of their en-
vironment, we may expect that the regret GMM reG
would predict behavior well. If instead we have evi-
dence that agents choose heuristically based on part-
nership density and size, we might have greater con-
�dence in predictions based on hG , or on some other
heuristic models that capture our intuition of agents'
behavior. In other situations, we may consider that
both models capture factors determining behavior, and
view the knowledge sources as complementary.

3.3 SIMULATION MODEL

The role of our simulation model is to generate play
data from a plausible agent interaction process. In this
study, we treat this data as the actual outcome, and
use it to evaluate the GMMs above as well as combined
models. The simulation is based on the idea that ac-
tual agent behavior is produced via repeated interac-
tion through a reinforcement learning (RL) procedure.

In the model, each agent is an independent learner,
employing an RL procedure designed for partially ob-
servable environments (Jaakkola et al., 1995). The
environment for company i comprises i and its part-
ners (i.e., its neighbors N−i), and each con�guration of
partner strategies sN−i

is a possible state. The agent
seeks to learn a stochastic play policy: σi(si | sN−i

),
which denotes the probability of playing action si at
state sN−i

. However, the agent does not actually ob-
serve sN−i before taking its action. Thus, the action
is actually selected based on the policy, for a = 1, 2,

Pri(si = a) =
∑
sN−i

σi(si = a | sN−i
) Pr(sN−i

). (4)

Pri(sN−i
) is a stationary probability distribution over

states, which, for simplicity, we take to be uniform.
The scarcity of companies' knowledge about others'
strategies and the network e�ects motivates our choice
of Pri(sN−i

) instead of a more complicated model of
network dynamics.

To learn the policy σi, we apply the RL procedure of
Jaakkola et al. (1995).

1. Initialize σi to pChange(i) (i.e., the heuristic pol-
icy from hM ).

2. Generate a play s using (4). Observe the resulting
local state sNi

and receive as reward the payo�
ui(sNi

). Update Qi(si, sN−i
), the average reward

for taking action si in the associated local state.

3. Choose σ∗
i (si | sN−i

) to maximize Qi(si, sN−i
).

Adjust the current policy σi in the direction of
σ∗

i : σi ← σi(1− γ) + σ∗
i γ, where γ is the learning

rate.

4. Repeat steps 2 and 3 until convergence.

For our experiments, we used γ = 0.2 and iterated
steps 2 and 3 above 40 times, the point after which
few changes occurred in the learned RL policy σ. We
denote the simulated model at the end of the RL pro-
cedure as simM .

Note that the RL process starts with the local heuristic
rule-based policy, but is updated based on payo� ex-
perience. Thus we expect that both the heuristic rule-
based model and the rationalistic regret-based model
may o�er value for predicting the outcomes of simM .

4 METHODS FOR COMBINING

KNOWLEDGE SOURCES

Given two complementary sources of knowledge, how
can we integrate them into a single GMM? We for-
mulate the problem for the case that one knowledge
source is expressed explicitly as a GMM, G1, and the
other in the form of some data D = {s1, . . . , sm} of
joint plays related to the multiagent scenario.2 Note
that D may not re�ect the actual distribution of play
accurately, for example because it is small in size or be-
cause it was observed in a di�erent multiagent setting.
In this section we answer these questions abstractly
and in the next section show how we can do this for
our speci�c reG model and data D derived from hM .

4.1 DIRECT UPDATE

The direct update method combines the two sources of
knowledge G1 and D into a new GMM, directG , de-
rived by adjusting the λG1 parameters of G1 to maxi-
mize the predictive performance w.r.t. the data D.

2Since we can generate such a data set from a GMM, or
induce a GMM from data, the combination methods can be
applied to more general settings where knowledge sources
come in either form.



We measure predictive performance using the loga-
rithmic scoring rule (Gneiting and Raftery, 2007):

Score(G | D) =
∑|D|

k=1 log PrG(sk), which assesses the
log-likelihood of the data. We take as our problem to
tune the GMM's parameters λ in order to maximize
this score (Kappen and Rodríguez, 1997),

Score(G1 | D) =
|D|∑
k=1

log PrG1(s
k) = L(D | λ = λG1).

We employ the gradient ascent method to maximize
data likelihood, which entails computing the gradient
of L w.r.t λ:

∇λ = ∂L(D|λ)
∂λ

=
P|D|

k ∂ log e
−

P
i λiεi(sk

Ni
)

∂λ − |D|∂ log Z
∂λ

(5)

and adjusting λ = λ + α∇λ, where α is the learning
rate, until the gradient is below some threshold.

A major problem in graphical-model parameter learn-
ing is the intractability of calculating log Z in (5).
It entails iterating over all possible outcomes of the
game, which is exponential in the number of play-
ers N , rendering exact inference and learning in undi-
rected graphical models intractable. Since our priority
is to accurately evaluate knowledge combination meth-
ods for GMMs, our current implementation of the in-
ference and learning algorithms does not employ any
approximation. Our pilot study of generalized belief
propagation approximations in GMMs (Yedidia et al.,
2001) has indeed yielded positive results, and will be
incorporated in future reports.

4.2 OPINION POOL

Unlike direct update, which depends on the availability
of both play-outcome data and the potential function's
parameterized form, the next two methods, opinion

pool and mixing data, push the knowledge combina-
tion problem towards potentially greater independence
from the input knowledge sources' forms.

The opinion pool method starts by �rst using half the
given data D to learn a GMM G2 by adjusting its
parameters to maximize the likelihood of the data, as
in the direct update method above. The combined
model OPG is then an aggregation of G1 and G2 into
a single probability distribution:

PrOPG(s) = f(PrG1(s),PrG2(s)).

Note that the above equation does not involve de�ning
a separate pooled potential function for each player in
the combined model. The rationale is that potentials
are not normalized like the joint probability, and thus,

their absolute values contain little meaning when taken
out of the context of their corresponding models.

We adopt for our aggregation function the weighted
geometric mean, called the logarithmic opinion pool

(logOP).

PrOPG(s) =
PrG1(s)

w PrG2(s)
1−w

Z
.

The logOP is the only pool known to preserve inde-
pendence structure in graphical models (Pennock and
Wellman, 2005), which is an important property in our
context. The weight parameter w can be set by �at,
or tuned with data. In our experiments described be-
low, we employ the other half of input game-play data
D, denoted D̄, and set w by maximizing the objective
function:

L(D̄ | w) =
|D̄|∑
k

log PrOPG(sk). (6)

In brief, given the two components G1 and G2, the
opinion pool method �rst initializes w = 0.5. It
then repeats computing the gradient ∇w of the log-
likelihood w.r.t w by di�erentiating (6), and updating
w = w + β∇w, where β is the learning rate, until the
gradient is acceptably small.

4.3 MIXING DATA

The mixing data method samples joint plays from the
given GMM G1 to generate a new data set D1. We
combine D1 and D into one data set mD by sampling
from the two sources equally, though one could easily
weight one source more than another by adjusting the
sampling ratio. We then induce a new GMM for a
given parametrized form by tuning the parameter λ,
as detailed in the direct update approach (Section 4.1),
to maximize the likelihood of the new data mD.

Below is the outline of the mixing data method, which
produces the combined GMM mixG . Note that we
leave out step 4 in our implementation.

1. Generate a sample of play outcomes D1 from G1.

2. Build the mixed data set mD from D1 and D with
sampling ratio ω = 0.5.

3. Initialize mixG with some λmixG . Update λmixG

as in direct update using the data mD.

4. (optional) Tune ω in the direction determined by
the gradient-descent method to maximize mixG 's
performance on a small held-out part of the test-
ing data. Repeat steps 3 and 4 until the gradient
is below some threshold.



5 EMPIRICAL STUDY

We evaluate our combination approaches experimen-
tally using our simpli�ed version of the Internet in-
dustry partnership domain. We concentrate mainly on
Example 1, the scenario depicted in Figure 1. In the
�rst experiment, we also examine Example 2, which
employs a smaller graph including only the top four
companies.

5.1 EXPERIMENT SETTINGS

In our experiments we use the following components
de�ned above: (i) the regret GMM reG with the tem-
perature parameters generated uniformly randomly
(except in one case explicitly speci�ed below), (ii) a
data set D of joint plays generated by using the heuris-
tic rule-based model hM , (iii) the heuristic model hM
and associated GMM hG , and (iv) a testing data set
D∗ derived from the RL-based model simM . We com-
pare our di�erent combination approaches based on
their ability to predict the test data set as measure
by the score function Score(G | D∗). In particular,
we compare the performance of a model that com-
bines knowledge sources combinedG relative to the
performance of a baseline model baseG using a ratio

of scores, R = Score(baseG|D∗)

Score(combinedG|D∗)
.

The inverted order of baseG and combinedG is due
to Score's negativity, and thus, any R > 1 indicates
combinedG 's improvement over baseG .

We experiment with several environment settings. For
each setting, we conduct 20 trials, each of which in-
volves a training data D set of 500 plays from hM and
a testing data set D∗ of 500 plays from simM .

5.2 RESULTS AND ANALYSIS

First, in Figure 2 and Figure 3 we present an overview
of our combination methods' e�ectiveness. For both
�gures, reG and D are used to derive the model
directG using the direct update combination method,
the model OPG using the opinion pool method, and
the model mixG using the mixed data method.

Figure 2 displays predictive performance across the
two examples (1 and 2) and the two baseline mod-
els (reG and hG). Mixing data is consistently best
of the three combination methods, and direct up-
date performs relatively better than opinion pool. All
three methods yield better results than individual in-
put models, suggesting that combining two knowledge
sources is bene�cial regardless of which of the proposed
methods is adopted.

Figure 3 shows the performance of various models com-

Figure 2: Combination methods' performance across
di�erent examples and baselines.

pared to a model derived from the same gold-standard
source simM as our test data D∗. We sample a sepa-
rate data set D′ from simM and employ it in learning
a GMM simG of the parametrized regret form (2),
using maximum likelihood to adjust the temperature
parameter. The results reveal that our combined mod-
els, especially mixG , closely match simG in terms of
predictive performance.

Figure 3: Combination and input models versus the
underlying model.

Next, we study the e�ect of varying the quality of the
two input sources. Figure 4 shows the e�ect of varying
the amount of joint-play data available in D. Specif-
ically, we make a fraction ρ|D| of play observations,
ρ ∈ [0, 1], available to the three combination methods.
From Figure 4, we observe that as long as ρ > 0.1,
performance remains fairly stable. In our experiments,
this corresponds to a threshold data set size of approxi-
mately 500×0.1 = 50. When the amount of data goes



below this threshold, the combined model may very
well become inferior to the models reG and hG .

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

pe
rf

or
m

an
ce

 s
co

re
 r

at
io

proportion of data used

directG vs reG
OPG vs reG

mixG vs reG
directG vs hG

OPG vs hG
mixG vs hG

Figure 4: Combination methods' performance versus
data availability portion ρ.

Figure 5 shows the e�ect of varying the quality of the
GMM provided as input to the combination methods.
To modulate the accuracy of reG , we introduce a pa-
rameter δ controlling the relation of its temperature
parameters to those of simG . Speci�cally, we set λreG

to (1 + δ)λsimG . The results of the third experiment
are depicted in Figure 5. When compared with the
unchanged heuristic model hG , the combination mod-
els show a slight decrease in their relative performance
with δ, which re�ects the e�ect of reG 's inaccuracy on
the combination methods. When the baseline is reG ,
in contrast, the degradation of the combined model is
dominated by the e�ect of compromising the baseline
reG . In other words, combining knowledge sources ef-
fectively compensates for degrading one of them.

In these experiments, OPG 's poor performance rela-
tive to that of directG and mixG may be due in part
to its reliance on only a single parameter, w, compared
to the vector λ available to the other methods. mixG 's
overall superiority is likely a result of its directly sam-
pling from reG , which employs information contained
in reG more e�ectively than directG , where reG only
matters at the initialization stage.

Figure 6 presents the results of an experiment designed
to strengthen our claims about the bene�ts of integrat-
ing knowledge sources in a single model. We examine
the combined models' performance in environments
where the simulation mode simM is not the product
of RL that starts with the input model hM . In partic-
ular, we de�ne a di�erent heuristic model hM ′, such
that pChangehM ′(i) = 0.05 for all i. Let E be the
input data set generated from hM ′. Based on hM ′,
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we subsequently build the simulation model simM ′

and its corresponding test data E∗. Given these data
sets and models, we can evaluate the combined models
across drastically di�erent starting points, by compar-
ing their performances when di�erent input sources, D
and E, are provided, on the same testing data (either
D∗ or E∗). First, we compare the performance of the
heuristic models employed in generating input data,
hG(D) (induced from hM ) and hG(E) (induced from
hM ′): hG(D) performs 60% better than hG(E) when
tested on D∗, whereas hG(E) outperforms hG(D) by
54% on E∗. This assessment a�rms that the two dif-
ferent input data sets, D and E, are indeed di�eren-
tiable in terms of the behavior models they represent.
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The results presented in Figure 6 indicate that better



performance is achieved in cases where the test and
input environments coincide (the �rst and third mea-
sures) compared to those in which they are unrelated
(second and fourth). This observation con�rms that
combined models whose input data contains some in-
formation about the underlying behavior model out-
perform those extracting irrelevant information from
its inputs. The gaps in mixG 's performance between
scenarios where test cases are derived from the same
input (�rst and third) and from an unrelated model
(second and forth) are relatively smaller than those
in the other methods. This phenomenon is likely a
result of mixG 's more e�ective usage of both knowl-
edge sources, which limits the impact of irrelevant in-
put data, and possibly contributes to the good per-
formance of mixG(D), which is tuned to �t D, when
tested on E∗.

6 CONCLUSIONS

GMMs provide a �exible representation framework for
graphically structured multiagent scenarios, support-
ing the speci�cation of probability distributions based
on game-theoretic models as well as heuristic or other
qualitatively di�erent characterizations of agent be-
havior. We explored the possibility of exploiting this
�exibility by employing multiple knowledge sources for
prediction, as demonstrated for the task of predicting
the outcome of a reinforcement learning process.

Our basic �nding is that combining two knowledge
sources in this scenario does improve predictive power
over either input source alone. We have also identi�ed
the most e�ective combination method among those
tried�mixing data�and the existence of a threshold
for data availability that can help boost e�ciency. Fur-
thermore, we have found that our knowledge combina-
tion approaches, especially mixing data, can e�ectively
match the performance of modeling the reinforcement
learning process directly.

This study is a �rst step in what we expect to be an
extended e�ort to develop the GMM framework for
supporting reasoning about strategic situations. One
important issue to address is computational feasibility;
although the graphical representation facilitates scala-
bility in the number of agents, accurate approximation
techniques are nevertheless essential to support prac-
tical applications with large models.

Knowledge about multiagent behavior may come from
sources other than play history and regret functions,
and so another logical research direction is to develop
canonical models for capturing and combining such
sources. Learning may be extended to not only the
model's parameters, but also the structure of potential
functions and the graph topology itself. Such exten-

sions present more complicated problems for combin-
ing models derived from di�erent knowledge sources.
Finally, we might look to dynamic Bayesian network
concepts to extend the GMM framework to add a time
dimension, and thus enable modeling sequential and
interactive multiagent environments.
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