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Abstract

A central task in many applications is reason-
ing about processes that change over continu-
ous time. Continuous-Time Bayesian Networks
is a general compact representation language
for multi-component continuous-time processes.
However, exact inference in such processes is ex-
ponential in the number of components, and thus
infeasible for most models of interest. Here we
develop a novel Gibbs sampling procedure for
multi-component processes. This procedure iter-
atively samples a trajectory for one of the compo-
nents given the remaining ones. We show how to
performexactsampling that adapts to the natural
time scale of the sampled process. Moreover, we
show that this sampling procedure naturally ex-
ploits the structure of the network to reduce the
computational cost of each step. This procedure
is the first that can provide asymptotically unbi-
ased approximation in such processes.

1 Introduction

In many applications, we reason about processes that
evolve over time. Such processes can involve short time
scales (e.g., the dynamics of molecules) or very long ones
(e.g., evolution). In both examples, there is no obvious dis-
crete “time unit” by which the process evolves. Rather, it
is more natural to view the process as changing in a con-
tinuous time: the system is in some state for a certain dura-
tion, and then transitions to another state. The language of
continuous-time Markov processes(CTMPs) provides an
elegant mathematical framework to reason about the prob-
ability of trajectories of such systems (Gardiner, 2004). We
consider Markov processes that are homogeneous in time
and have a finite state space. Such systems are fully deter-
mined by the state spaceS, the distribution of the process
at the initial time, and a description of the dynamics of the
process. These dynamics are specified by arate matrixQ,
whose off-diagonal entriesqa,b are exponential rate inten-
sities for transitioning from statea to b. Intuitively, we can
think of the entryqa,b as the rate parameter of an exponen-

tial distribution whose value is the duration of time spent in
statea before transitioning tob.

In many applications, the state space is of the form of a
product spaceS = S1 × S1 × · · · × SM , whereM is the
number ofcomponents(such processes are called multi-
component). Even if each of theSi is of low dimension,
the dimension of the state space is exponential in the num-
ber of components, which poses representational and com-
putational difficulties. Recently, Nodelman et al. (2002)
introduced the representation language ofcontinuous-time
Bayesian networks(CTBNs), which provides a factorized,
component-based representation of CTMPs: each compo-
nent is characterized by a conditional CTMP dynamics,
which describes its local evolution as a function of the cur-
rent state of its parents in the network. This representation
is natural for describing systems with a sparse structure of
local influences between components.

For most applications of such CTMP models, we need
to perform inference to evaluate the posterior probability
of various queries given evidence. Exact inference requires
exponentiation of the rate matrixQ. As the rate matrix is
exponential in the number of components, exact computa-
tions are infeasible for more than a few components. Thus,
applications of factored CTMPs require the use of approx-
imate inference.

In two recent works Nodelman et al. (2005) and Saria
et al. (2007) describe approximate inference procedures
based on Expectation Propagation, a variational approxi-
mation method (Minka, 2001; Heskes and Zoeter, 2002).
These approximation procedures perform local propaga-
tion of messages between components (or sub-trajectories
of components) until convergence. Such procedures can be
quite efficient, however they can also introduce a system-
atic error in the approximation (Fan and Shelton, 2008).

More recently, Fan and Shelton (2008) introduced a
procedure that employs importance sampling and particle
filtering to sample trajectories from the network. Such a
stochastic sampling procedure has anytime properties as
collecting more samples leads to more accurate approxi-
mation. However, since this is an importance sampler, it
has limited capabilities to propagate evidence “back” to in-
fluence the sampling of earlier time steps. As a result, when
the evidence is mostly at the end of the relevant time inter-



val, and is of low probability, the procedure requires many
samples. A related importance sampler was proposed by
Ng et al. (2005) for monitoring a continuous time process.

In this paper we introduce a new stochastic sampling
procedure for factored CTMPs. The goal is to sample
random system trajectories from the posterior distribution.
Once we have multiple independent samples from this dis-
tribution we can approximate the answer to queries about
the posterior using the empirical distribution of the sam-
ples. The challenge is to sample from the posterior. While
generative sampling of a CTMP is straightforward, sam-
pling given evidence is far from trivial, as evidence modi-
fies the posterior probability of earlier time points.

Markov Chain Monte Carlo (MCMC) procedures cir-
cumvent this problem by sampling a stochastic sequence
of system states (trajectories in our models) that will even-
tually be governed by the desired posterior distribution.
Here we develop a Gibbs sampling procedure for factored
CTMPs. This procedure is initialized by setting an arbi-
trary trajectory which is consistent with the evidence. It
then alternates between randomly picking a componentXi

and sampling a trajectory from the distribution ofXi con-
ditioned on the trajectories of the other components and
the evidence. This procedure is reminiscent ofblock Gibbs
sampling(Gilks et al., 1996) as we sample an entire trajec-
tory rather than a single random variable in each iteration.
However, in our approach we need to sample a continuous
trajectory.

The crux of our approach is in the way we sample a tra-
jectory for a single component from a process that is con-
ditioned on trajectories of the other components. While
such a process is Markovian, it is not homogeneous as its
dynamics depends on trajectories of its Markov Blanket as
well as on past and present evidence. We show that we can
perform exact sampling by utilizing this Markovian prop-
erty, and that the cost of this procedure is determined by the
complexity of the current trajectories and the sampled one,
and not by a pre-defined resolution parameter. This implies
that the computational time adapts to the complexity of the
sampled object.

2 Continuous-Time Bayesian Networks

In this section we briefly review the CTBN model (Nodel-
man et al., 2002). Consider anM -component Markov pro-
cess

X(t) = (X(t)
1 , X

(t)
2 , . . . X

(t)
M )

with state spaceS = S1 × S2 × · · · × SM .
A notational convention: vectors are denoted by bold-

face symbols, e.g.,X,a, and matrices are denoted by
blackboard style characters, e.g.,Q. The states inS are
denoted by vectors of indexes,a = (a1, . . . , aM ). The in-
dexes1 ≤ i, j ≤ M are used to enumerate the components.
We use the notationX(t) andX

(t)
i to denote a random vari-

able at timet. We will useX [s,t], X(s,t], X [s,t), to denote

the state ofX in the closed and semi-open intervals froms
to t.

The dynamics of a time-homogeneous continuous-time
Markov process are fully determined by theMarkov tran-
sition function,

pa,b(t) = Pr(X(t+s) = b|X(s) = a),

where time-homogeneity implies that the right-hand side
does not depend ons. Provided that the transition func-
tion satisfies certain analytical properties (continuity, and
regularity; see Chung (1960)) the dynamics are fully cap-
tured by a constant matrixQ—the rate, or intensity ma-
trix—whose entriesqa,b are defined by

qa,b = lim
h↓0

pa,b(h)− δa,b

h
,

whereδa,b is a multivariate Kronecker delta.
A Markov process can also be viewed as a generative

process: The process starts in some statea. After spend-
ing a finite amount of time ata, it transitions, at a random
time, to a random stateb 6= a. The transition times to the
various states are exponentially distributed, with rate pa-
rametersqa,b. The diagonal elements ofQ are set such that
each row sums up to zero.

The time-dependent probability distribution,p(t),
whose entries are defined by

pa(t) = Pr(X(t) = a), a ∈ S,

satisfies the so-calledforward, or master, equation,

dp

dt
= QT p. (1)

Thus, using theQ matrix, we can write the Markov transi-
tion function as

pa,b(t) = [exp(tQ)]a,b ,

that is, as thea, b entry in the matrix resulting from expo-
nentiatingQ (using matrix exponentiation).

It is important to note that the master Eq. (1) encom-
passes all the statistical properties of the Markov process.
There is a one-to-one correspondence between the descrip-
tion of a Markov process by means of a master equa-
tion, and by means of a “pathwise” characterization (up to
stochastic equivalence of the latter; see Gikhman and Sko-
rokhod (1975)).

Continuous-time Bayesian Networksprovide a com-
pact representation of multi-component Markov processes
by incorporating two assumptions: (1) every transition in-
volves a single component; (2) each component undergoes
transitions at a rate which depends only on the state of a
subsystem of components.

Formally, the structure of a CTBN is defined by as-
signing to each componenti a set of indicesPar(i) ⊆



{1, . . . ,M} \ {i}. With each componenti, we associate
a conditional rate matrixQi|Par(i) with entriesq

i|Par(i)
ai,bi|ui

whereai andbi are states ofXi andui is a state ofPar(i).
This matrix defines the rate ofXi as a function of the state
of its parents. Thus, when the parents ofXi change state,
the rates governing its transition can change.

The formal semantics of CTBNs is in terms of a joint
rate matrix for the whole process. This rate matrix is de-
fined by combining the conditional rate matrices

qa,b =
M∑
i=1

q
i|Par(i)
ai,bi|Pi(a)

∏
j 6=i

δaj ,bj

 . (2)

wherePi(a) is a projection operator that project a com-
plete assignmenta to an assignment to thePar(i) compo-
nents. Eq. (2) is, using the terminology of Nodelman et al.
(2002), the “amalgamation” of theM conditional rate ma-
trices. Note the compact representation, which is valid for
both diagonal and off-diagonal entries. It is also notewor-
thy that amalgamation is a summation, rather than a prod-
uct; indeed, independent exponential rates are additive. If,
for example, every component hasd possible values andk
parents, the rate matrix requires onlyMdk+1(d − 1) pa-
rameters, rather thandM (dM − 1).

The dependency relations between components can be
represented graphically as a directed graph,G, in which
each node corresponds to a component, and each directed
edge defines a parent-child relation. A CTBN consists of
such a graph, supplemented with a set ofM conditional
rate matricesQi|Par(i). The graph structure has two main
roles: (i) it provides a data structure to which parameters
are associated; (ii) it provides a qualitative description of
dependencies among the various components of the sys-
tem. The graph structure also reveals conditional inde-
pendencies between sets of components (Nodelman et al.,
2002).

Notational conventions: Full trajectories and observed
pointwise values of components are denoted by lower case
letters indexed by the relevant time intervals, e.g.,x

(t)
i ,

x
[s,t]
i . We will usePr(x(t)

i ) andPr(x[s,t]
i ) as shorthands

for Pr(X(t)
i = x

(t)
i ) andPr(X [s,t]

i = x
[s,t]
i ).

It should be emphasized that even though CTBNs pro-
vide a succinct representation of multi-component pro-
cesses, any inference query still requires the exponentia-
tion of the full dM × dM dimensional rate matrixQ. For
example, given the state of the system at times0 andT , the
Markov bridgeformula is

Pr(X(t) = a|x(0),x(T )) =
[exp(tQ)]x(0),a[exp((T − t)Q)]a,x(T )

[exp(TQ)]x(0),x(T )
.

It is the premise of this work that such expressions cannot
be computed directly, thus requiring approximation algo-
rithms.

3 Sampling in a Two Component Process

3.1 Introduction

We will start by addressing the task of sampling from
a two components process. The generalization to multi-
component processes will follow in the next section.

Consider a two-component CTBN,X = (X, Y ),
whose dynamics is defined by conditional ratesQX|Y and
QY |X (that is,X is a parent ofY andY is a parent ofX).
Suppose that we are given partial evidence about the state
of the system. This evidence might contain point observa-
tions, as well as continuous observations in some intervals,
of the states of one or two components. Our goal is to sam-
ple a trajectory of(X, Y ) from the joint posterior distribu-
tion.

The approach we take here is to use a Gibbs sampler
(Gilks et al., 1996) over trajectories. In such a sampler, we
initialize X andY with trajectories that are consistent with
the evidence. Then, we randomly either sample a trajectory
of X given the entire trajectory ofY and the evidence on
X, or sample a trajectory ofY given the entire trajectory of
X and the evidence onY . This procedure defines a random
walk in the space of(X, Y ) trajectories. The basic theory
of Gibbs sampling suggests that this random walk will con-
verge to the distribution ofX, Y given the evidence.

To implement such a sampler, we need to be able to
sample the trajectory of one component given the entire
trajectory of the other component and the evidence. Sup-
pose, we have a fully observed trajectory onY . In this case,
observations onX at the extremities of some time interval
statistically separate this interval from the rest of trajectory.
Thus, we can restrict our analysis to the following situation:
the process is restricted to a time interval[0, T ] and we are
given observationsX(0) = x(0) andX(T ) = x(T ), along
with the entire trajectory ofY in [0, T ]. The latter consists
of a sequence of states(y0, . . . , yK) and transition times
(τ0 = 0, τ1, . . . , τK , τK+1 = T ). An example of such sce-
nario is shown in Figure 1(a). The entire problem is now
reduced to the following question: how can we sample a
trajectory ofX in the interval(0, T ) from its posterior dis-
tribution?

To approach this problem we exploit the fact thatthe
sub-processX given thatY [0,T ] = y[0,T ] is Markovian(al-
though non-homogeneous in time):

Proposition 3.1: The following Markov property holds for
all t > s,

Pr(X(t) | x[0,s], x(T ), y[0,T ]) = Pr(X(t) | x(s), x(T ), y[s,T ]).

3.2 Time Granularized Process

Analysis of such process requires reasoning about a contin-
uum of random variables. A natural way of doing so is to
perform the analysis in discrete time with a finite time gran-
ularity h, and examine the behavior of the system when we
takeh ↓ 0.



To do so, we introduce some definitions. SupposePr
is the probability function associated with a continuous-
time Markov process with rate matrixQ. We define the
h-coarseningof Pr to bePrh, a distribution over the ran-
dom variablesX(0),X(h),X(2h), . . . which is defined by
the dynamics

Prh(X(t+h) = b | X(t) = a) = δa,b + h · qa,b,

which is the Taylor expansion of[exp(tQ)]a,b, truncated
at the linear term. Whenh < mina(−1/qa,a), Prh is a
well-defined distribution.

We would like to show that the measurePrh(A) of an
eventA converges toPr(A) whenh ↓ 0. To do so, how-
ever, we need to define theh-coarsening of an event. Given
a time pointt, definebtch anddteh to be the rounding down
and up oft to the nearest multiple ofh. For point events
we define[[X(t) = a]]h to be the eventX(btch) = a, and

[[X(t+) = a]]h to the eventX(dteh) = a. For an inter-
val event, we define[[X(s,t] = a(s,t]]]h to be the event

X(dseh) = adseh
,X(dseh+h) = adseh+h, . . . ,X(btch) =

abtch
. Similarly, we can define the coarsening of events

over only one component and composite events.
Note that the probability of any given trajectory tends

to zero ash → 0. The difficulty in working directly in the
continuous-time formulation is that we condition on events
that have zero probability. The introduction of a granular-
ized process allows us to manipulate well-defined condi-
tional probabilities, which remain finite ash → 0.

Theorem 3.2: Let A andB be point, interval, or a finite
combination of such events. Then

lim
h↓0

Prh([[A]]h | [[B]]h) = Pr(A | B)

From now on, we will drop the[[A]]h notation, and assume
it implicitly in the scope ofPrh().

A simple minded approach to solve our problem is to
work with a given finiteh and use discrete sampling to
sample trajectories in the coarsened model (thus, working
with a dynamical Bayesian network). If h is sufficiently
small this might be a reasonable approximation to the de-
sired distribution. However, this approach suffers from
sub-optimality due to this fixed time granularity — a too
coarse granularity leads to inaccuracies, while a too fine
granularity leads to computational overhead. Moreover,
when different components evolve at different rates, this
trade-off is governed by the fastest component.

3.3 Sampling a Continuous-Time Trajectory

To avoid the trade-offs of fixed time granularity we exploit
the fact that while a single trajectory is defined over infinite
time points, it involves only a finite number of transitions
in a finite interval. Therefore, instead of sampling states
at different time points, we only sample a finite sequence

of transitions. The Markovian property of the conditional
processX enables doing so using a sequential procedure.

Our procedure starts by sampling the first transition
time. It then samples the new state the transition leads to.
As this new sample point statistically separates the remain-
ing interval from the past, we are back with the initial prob-
lem yet with a shorter interval. We repeat these steps until
the entire trajectory is sampled; it terminates once the next
transition time is past the end of the interval.

Our task is to sample the first transition time and the
next state, conditioned onX(0) = x(0), X(T ) = x(T ) as
well as the entire trajectory ofY in [0, T ]. To sample this
transition time, we first define the conditional cumulative
distribution functionF (t) that X stays in the initial state
for a time less thant:

F (t) = 1− Pr
(
X(0,t] = x(0)|x(0), x(T ), y[0,T ]

)
(3)

If we can evaluate this function, then we can sample the
first transition timeτ by inverse transform sampling — we
drawξ from a uniform distribution in the interval[0, 1], and
setτ = F−1(ξ); see Figure 1a,b.

The Markov property of the conditional process allows
us to decompose the probability thatX remains in its initial
state until timet. Denoting the probability ofY ’s trajectory
and ofX remaining in its initial state until timet by

ppast(t) = Pr(X(0,t] = x(0), y(0,t]|x(0), y(0)),

and the probability of future observations given the state of
(Xt, Yt) by

pfuture
x (t) = Pr(x(T ), y(t,T ]|X(t) = x, y(t)).

We can then write the probability thatX is in statex(0)

until t as

Pr
(
X(0,t] = x(0)|x(0), x(T ), y[0,T ]

)
=

ppast(t) · pfuture
x(0) (t)

pfuture
x(0) (0)

.

(4)
Lamentably, while the reasoning we just described is

seemingly correct, all the terms in Eq. (4) are equal to
0, since they account for the probability ofY ’s trajectory.
However, as we shall see, if we evaluate this equation care-
fully we will be able to define it with terms that decompose
the problem in a similar manner.

To efficiently compute these terms we exploit the fact
that although the process is not homogeneous, the dynam-
ics of the joint process within an interval[τk, τk+1) , in
which Y has a fixed valueyk, is characterized by asin-
gle unnormalized rate matrix whose entries depend onyk.
This allows us to adopt aforward-backwardpropagation
scheme. We now develop the details of these propagations.

3.4 Computingppast(t)

We begin with expressingppast(t) as a product of local
terms. Recall thatppast(t) is the probability thatX is con-
stant until timet. We denote byppast

h (t) the h-coarsened
version ofppast(t).



(a) Sampling first transition (b) Sampling second transition

(c) Initial propagators (d) Propagators in second step

Figure 1: Illustration of sampling of a single component with three states. (a) Top panel: sampling scenario, with a
complete trajectory forY , that has four transitions atτ1, . . . , τ4, and point evidence onX at times0 andT . Bottom panel:
the cumulative distributionF (t), thatX changes states before timet given this evidence. We sample the next transition
time by drawingξ from a uniform distribution and settingτ = F−1(ξ). Note that asx(0) 6= x(T ), F (T ) = 1. The bar
graph represents the conditional distribution of the next state, given a transition at timeτ . (b) Same sampling procedure
for the second transition. HereF (T ) < 1 since it is not necessary forX to change its state. (c and d) The two components
used in computing1−F (t): p̃past(t) the probability thatX stays with a constant value until timet andY has the observed
trajectory until this time; and̃pfuture

t (x) the probability thatX transition’s from statex at t to its observed state at timeT
andY follows its trajectory fromt to T .

To characterize the dynamics within intervals
(τk, τk+1) we defineconstant propagator functions

φy
h,x(∆t) =

Prh(X(t,t+∆t] = x, Y (t,t+∆t] = y|X(t) = x, Y (t) = y)

These functions determine the probability thatX = x and
Y = y throughout an interval of length∆t if they start with
these values.

At time τk+1 the Y component changes it value from
yk to yk+1. The transition probability at this point ish ·
q

Y |X
yk,yk+1|x(0) . Thus, from the Markov property of the joint

process it follows that fort ∈ (τk, τk+1)

ppast
h (t) =

[
k−1∏
l=0

φyl

h,x(0)(∆l) · qY |X
yl,yl+1|x(0) · h

]
φyk

h,x(0)(t−τk)

where∆l = τl+1 − τl.
To compute the constant propagator functions, we real-

ize that in each step within the interval(s, t] the state does
not change. Thus,

φy
h,x(∆t) = [1 + h · (qX|Y

x,x|y + q
Y |X
y,y|x)]

b∆tch
h

We define

φy
x(∆t) = lim

h↓0
φy

h,x(∆t) = e
(∆t)(q

X|Y
x,x|y+q

Y |X
y,y|x)



We conclude that if

p̃past(t) =

[
k−1∏
l=0

φyl

x(0)(∆l) · qY |X
yl,yl+1|x(0)

]
φyk

x(0)(t− τk),

then fort ∈ (τk, τk+1)

lim
h↓0

ppast
h (t)
hk

= p̃past(t)

3.5 Computingpfuture
x (t)

We now turn to computingpfuture
x (t). Unlike the previous

case, here we need to compute this term for every possible
value ofx. We do so by backward dynamic programing
(reminiscent of backward messages in HMMs).

We denote bypfuture
h (t) a vector with entriespfuture

h,x (t).
Note that,pfuture

h (T ) = ex(T ) whereex is the unit vector
with 1 in positionx. Next, we define apropagator matrix
Sy

h(∆t) with entries

sy
h,a,b(∆t) =

Prh(X(t+∆t) = b, Y (t,t+∆t] = y|X(t) = a, Y (t) = y)

This matrix provides the dynamics ofX in an interval
whereY is constant. We can use it to compute the prob-
ability of transitions between states ofX in the intervals
(τk, τk+1], for everyτk < s < t < τk+1

pfuture
h (s) = Syk

h (t− s)pfuture
h (t)

At transition pointsτk we need to take into account the
probability of a change. To account for such transitions, we
define a diagonal matrixTy,y′ whose(a, a) entry isq

Y |X
y,y′|a.

Using this notation and the Markov property of the joint
process the conditional probability of future observations
for τk ≤ t ≤ τk+1 is

pfuture
h (t) =

Syk−1
h (τk+1 − t)

[
K∏

l=k+1

hTyl,yl+1Sy
h(∆l)

]
ex(T )

It remains to determine the form of the propagator ma-
trix. At time granularityh, we can write the probability of
transitions between states ofX while Y = y as a product
of transition matrices. Thus,

Sy
h(∆t) = (I + h · RX|y)

b∆tch
h

whereRX|y is the matrix with entries

r
X|y
a,b =


q

X|Y
a,b|y a 6= b

q
X|Y
a,a|y + q

Y |X
y,y|a a = b

We now can define

Sy(∆t) = lim
h↓0

Sy
h(∆t) = e(∆t)RX|y

This terms is similar to transition matrix of a Markov pro-
cess. Note, however thatR is not a stochastic rate matrix,
as the rows do not sum up to0. In fact, the sum of the
rows in negative, which implies that the entries inSy

h(∆t)
tend to get smaller with∆t. This matches the intuition that
this term should capture the probability of the evidence that
Y = y for the whole interval.

To summarize, if we define fort ∈ (τk, τk+1)

p̃future(t) = Syk−1(τk+1−t)

[
K∏

l=k+1

Tyl,yl+1Sy(∆l)

]
ex(T ) ,

then

lim
h↓0

pfuture
h (t)
hK−k

= p̃future(t)

3.6 Putting it All Together

Based on the above arguments.

Prh

(
X(0,t] = x(0)|x(0), x(T ), y[0,T ]

)
=

ppast
h (t)pfuture

h,x(0)(t)

pfuture
h,x(0)(0)

Now, if t ∈ (τk, τk+1), then

Pr
(
X(0,t] = x(0)|x(0), x(T ), y[0,T ]

)
= lim

h↓0

ppast
h (t)pfuture

h,x(0)(t)

pfuture
h,x(0)(0)

= lim
h↓0

[h−kppast
h (t)][h−(K−k)pfuture

h,x(0)(t)]

h−Kpfuture
h,x(0)(0)

=
p̃past(t)p̃future

x(0) (t)
p̃future

x(0) (0)

Thus, in both numerator and denominator we must account
for the observation ofK transitions ofY , which have prob-
ability of o(hK). Since these term cancels out, we remain
with the conditional probability over the event of interest.

3.7 Forward Sampling

To sample an entire trajectory we first computep̃future(t)
only at transition times from the final transition to the start.

We sample the first transition time by drawing a ran-
dom valueξ from a uniform distribution in[0, 1]. Now
we find τ such thatF (τ) = ξ in two steps: First, we
sequentially search for the interval[τk, τk+1] such that
F (τk) ≤ F (τ) ≤ F (τk+1) by propagatingp̃past(t) for-
ward through transition points. Second, we search the ex-
act time point within[τk, τk+1] using binary search withL
steps to obtain accuracy of2−L∆k. This step requires com-
putation ofSyk(2−L∆k) and its exponentsSyk(2−l∆k),
l = 1, . . . , L− 1.

Once we sample the transition timet, we need to com-
pute the probability of the new state ofX. Using similar



arguments as the ones we discussed above, we find that

Pr
(
X(t+) = x|X [0,t) = x(0), X(t+) 6= x(0), y[0,T ]

)
=

q
X|Y
x(0),x

· p̃future
x (t)∑

x′ 6=x(0) q
X|Y
x(0),x′

· p̃future
x′ (t)

.

Thus, we can sample the next state by using the pre-
computed value of̃pfuture

x (t) at t.
Once we sample a transition (time and state), we can

sample the next transition in the interval[τ, T ]. The pro-
cedure proceeds while exploiting propagators which have
already been computed. It stops whenF (T ) < ξ, i.e., the
next sampled transition time is greater thanT . Figure 1
illustrates the conditional distributions of the first two tran-
sitions.

4 Sampling in a Multi-Component Process

The generalization from a two-component process to a gen-
eral one is relatively straightforward. At each step, we need
to sample a single componentXi conditioned on trajec-
tories inY = (X1, . . . , Xi−1, Xi+1, . . . , XM ). To save
computations we exploit the fact that given complete tra-
jectories over the Markov blanket ofXi, which is the com-
ponent set ofXi’s parents, children and its children’s par-
ents, the dynamics inXi is independent of the dynamics of
all other components (Nodelman et al., 2002).

Indeed, the structured representation of a CTBN allows
computations using only terms involving the Markov blan-
ket. To see that, we first notice that within an interval whose
state isY t = y the propagator matrix involves terms which
depend only on the parents ofXi q

Xi|Y
a,b|y = q

Xi|Par(i)
a,b|ui

and
terms which depend on the other members of the Markov
blanket,

q
Y |Xi

y,y|xi
=

∑
j∈Child(i)

q
Xj |Par(j)
xj ,xj |uj

+ cy

wherecy does not depend on the state ofXi. Therefore,
we define the reduced rate matrixRXi|v:

r
Xi|MB(i)
a,b|v =


q

Xi|Par(i)
a,b|ui

a 6= b

q
Xi|Par(i)
a,a|ui

+
∑

j∈Child(i) q
Xj |Par(j)
xj ,xj |uj

a = b

where,v is the projection ofy to the Markov blanket. Con-
sequently the local propagator matrix becomes

Sv(t) = exp(t · RXi|v) (5)

Importantly, this matrix differs fromSy(t) by a scalar fac-
tor of exp(t · cy). The same factor arise when replacing the
term in the exponent of the constant propagator. Therefore,
these terms cancel out upon normalization.

This development also shows that when samplingXi

we only care about transition points of one of the tra-
jectories in MB(i). Thus, the intervals computed in the

Figure 2: Relative error versus burn-in and number of sam-
ples.

initial backward propagation are defined by these transi-
tions. Therefore, the complexity of the backward procedure
scales with the rate ofXi and its Markov blanket.

5 Experimental Evaluation

We evaluate convergence properties of our procedure on a
chain network presented in Fan and Shelton (2008), as well
as on related networks of various sizes and parametriza-
tions. The basic network contains 5 components,X0,→
X1 → . . . X4, with 5 states each. The transition rates
of X0 suggest a tendency to cycle in 2 possible loops:
s0 → s1 → s2 → s0 ands0 → s3 → s4 → s0; whereas
for i > 0, Xi attempts to follow the state ofXi−1 — the
transitionq

Xi|Xi−1

a,b|c has higher intensity whenc = b. The
intensities ofX0 in the original network are symmetric rel-
ative to the two loops. We slightly perturbed parameters to
break symmetry since the symmetry between the two loops
tends to yield untypically fast convergence.

To obtain a reliable convergence assessment, we should
generate samples from multiple independent chains which
are initialized from an over-dispersed distribution. Aim-
ing to construct such samples, our initialization procedure
draws for each component a rate matrix by choosing an as-
signment to its parents from a uniform distribution and tak-
ing the corresponding conditional rate matrix. Using these
matrices it samples a trajectory that is consistent with evi-
dence independently for every component using the back-
ward propagation-forward sampling strategy we described
above.

A crucial issue in MCMC sampling is the time it takes
the chain tomix — that is, sample from a distribution that
is close to the target distribution rather than the initial dis-
tribution. It is not easy to show empirically that a chain has
mixed. We examine this issue from a pragmatic perspective
by asking what is the quality of the estimates based on sam-



Figure 3: Error versus burn-in for different evidence sets.
For each set we specify the average log-likelihood of the
samples after convergence.

ples taken at different number of “burn-in” iterations after
the initialization, where a single iteration involves sampling
each of the components once. We examine the estimates of
expected sufficient statistics that are required for learning
CTBN’s — residence time of components in states and the
number of transitions given the state of the component’s
parent (Nodelman et al., 2003). We measure estimation

quality by theaverage relative error
∑

j
|θ̂j−θj |

θj
whereθj

is exact value of thej’th sufficient statistics calculated us-
ing numerical integration and̂θj is the approximation.

To make the task harder, we chose an extreme case
by setting evidenceX(0) = ~s0 (the vector ofs0), and
X(3) = (s0, s1, s3, s0, s1). We then sampled the process
using multiple random starting points, computed estimated
expected statistics, and compared them the exact expected
statistics. Figure 2 shows the behavior of the average rela-
tive error taken over allθ > 0.05 versus the sample size for
different number of burn-in iterations. Note that when us-
ing longer burn-in, the error decreases at a rate ofO(

√
n),

wheren is the number of samples, which is what we would
expect from theory, if the samples where totally indepen-
dent. This implies that at this long burn-in the error due to
the sampling process is smaller than the error contributed
by the number of samples.

To study further the effect of evidence’s likelihood,
we measured error versus burn-in using 10,000 samples in
our original evidence set, and four additional ones. The
first additional evidence, denoted bye2 is generated by
settingX(0) = ~s0, forward sampling a random trajectory
and taking the complete trajectory ofX4 as evidence.
Additional sets are: e3 = {X(0) = ~s0,X

(3) = ~s0};
e4 = {X(0) = ~s0} and an extremely unlikely case
e5 = {X(0) = ~s0, X

(0,3)
0 = s0,X

(3) = (s0, s1, s3, s0, s1)}.
Figure 3 illustrates that burn-in period may vary by an

Figure 4: Effect of conditional transition probability sharp-
ness on mixing time.

order of magnitude, however it is not correlated with the
log-likelihood. Note that in this specific experiment slower
convergence occurs when continuous evidence is absent.
The reason for this may be the existence of multiple possi-
ble paths that cycle through state zero. That is, the posterior
distribution is , in a sense, multi-modal.

To further explore the effect of the posterior’s land-
scape, we tested networks with similar total rate of tran-
sitions, but with varying level of coupling between compo-
nents. Stronger coupling of components leads to a sharper
joint distribution. To achieve variations in the coupling
we consider variants of the chain CTBN where we set
π̂a,b|y = (qa,b|y)αP

c 6=a(qa,c|y)α and q̂a,b|y = qa,a|y · π̂a,b|y where

α is a non-negative sharpness parameter Asα → 0 the net-
work becomes smoother, which reduces coupling between
components. However, the stationary distribution is not
tending to a uniform one because we do not alter the di-
agonal elements. Figure 4 shows convergence behavior for
different values ofα where estimated statistics are averaged
over 1,000 samplers. As we might expect, convergence is
faster as the network becomes smoother.

Next we evaluated the scalability of the algorithm
by generating networks containing additional components
with an architecture similar to the basic chain network.
As exact inference is infeasible in such networks we mea-
sured relative error versus estimations taken from long
runs. Specifically, for eachN , we generated 1000 sam-
ples by running 100 independent chains and taking sam-
ples after 10,000 rounds as well as additional 9 samples
from each chain every 1,000 rounds. Using these samples
we estimated the target sufficient statistics. To avoid aver-
aging different numbers of components, we compared the
relative error in the estimate of 5 components for networks
of different sizes. Figure 5 shows the results of this exper-
iment. As we can see, convergence rates decay moderately



Figure 5: Convergence of relative error in statistics of first
five components in networks of various sizes. Errors are
computed with respect to statistics that are generated with
N = 10, 000 rounds.

Figure 6: Relative error versus run-time in seconds for var-
ious network sizes.

with the size of the network.
While for experimental purposes we generate many

samples independently. A practical strategy is to run a
small number of chains in parallel and then collect take a
large number of samples from each. We tested this strategy
by generating 10 independent chain for various networks
and estimating statistics from all samples except the first
20%. Using these, we measured how the behavior of error
versus CPU run-time scales with network size. Average re-
sults of 9 independent tests are shown in Figure 6. Roughly,
the run-time required for a certain level of accuracy scales
linearly with network size.

Our sampling procedure is such that the cost of sam-
pling a component depends on the time scales of its Markov
neighbors and its own rate matrix. To demonstrate that, we

Figure 7: The effect of different time scales on the sam-
pling. In this networkXi’s rate is twice as fast thanXi+1’s
rate. (top) The number transitions sampled for each of the
first four components as a function of iteration number.
(bottom) The number of intervals of Markov neighbors of
each component as a function of iteration number.

created a chain network where each component has rates
that are of half the magnitude of its parent. This means that
the first component tends to switch state twice as fast as the
second, the second is twice as fast as the third, and so on.
When we examine the number of transitions in the sampled
trajectories Figure 7, we see that indeed they are consistent
with these rates, and quickly converge to the expected num-
ber, since in this example the evidence is relatively weak.
When we examine the number of intervals in the Markov
blanket of each components, again we see that neighbors
of fast components have more intervals. In this graphX1

is an anomaly since it does not have a parent.

6 Discussion

In this paper we presented a new approach for approx-
imate inference in Continuous-Time Bayesian Networks.
By building on the strategy of Gibbs sampling. The core



of our method is a new procedure for exact sampling of a
trajectory of a single component, given evidence on its end
points and the full trajectories of its Markov blanket com-
ponents. This sampling procedure adapts in a natural way
to the time scale of the component, and is exact, up to a
predefined resolution, without sacrificing efficiency.

This is the first MCMC sampling procedure for this
type of models. As such it provides an approach that
can sample from the exact posterior, even for unlikely ev-
idence. As the current portfolio of inference procedures
for continuous-time processes is very small, our procedure
provides another important tool for addressing these mod-
els. In particular, since the approach isasymptotically un-
biasedin the number of iterations it can be used to judge
the systematic bias introduced by other, potentially faster,
approximate inference methodologies, such as the one of
Saria et al. (2007).

It is clear that sampling complete trajectories is not use-
ful in situations where we expect a very large number of
transitions in the relevant time periods. However, in many
applications of interest, and in particular our long term goal
of modeling sequence evolution (El-Hay et al., 2006), this
is not the case. When one or few components transitions
much faster than neighboring components, then we are es-
sentially interested in its average behavior (Friedman and
Kupferman, 2006). In such situations, it would be useful to
develop a Rao-Blackwellized sampler that integrates over
the fast components.

As with many MCMC procedures, one of the main con-
cerns is the mixing time of the sampler. An important di-
rection for future research is the examination of methods
for accelerating the mixing - such asMetropolis-coupled
MCMCor simulated tempering(Gilks et al., 1996) - as well
as a better theoretic understanding of the convergence prop-
erties.
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