Gibbs Sampling in Factorized Continuous-Time Markov Processes
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Abstract

A central task in many applications is reason-
ing about processes that change over continu-
ous time. Continuous-Time Bayesian Networks
is a general compact representation language
for multi-component continuous-time processes.
However, exact inference in such processes is ex-
ponential in the number of components, and thus
infeasible for most models of interest. Here we
develop a novel Gibbs sampling procedure for
multi-component processes. This procedure iter-
atively samples a trajectory for one of the compo-
nents given the remaining ones. We show how to
performexactsampling that adapts to the natural
time scale of the sampled process. Moreover, we
show that this sampling procedure naturally ex-
ploits the structure of the network to reduce the
computational cost of each step. This procedure
is the first that can provide asymptotically unbi-
ased approximation in such processes.
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tial distribution whose value is the duration of time spentin
statea before transitioning té.

In many applications, the state space is of the form of a
product spacé = Sy x S; x --- x Sy, wherelM is the
number ofcomponentgsuch processes are called multi-
component). Even if each of the is of low dimension,
the dimension of the state space is exponential in the num-
ber of components, which poses representational and com-
putational difficulties. Recently, Nodelman et al. (2002)
introduced the representation languageaftinuous-time
Bayesian network@CTBNSs), which provides a factorized,
component-based representation of CTMPs: each compo-
nent is characterized by a conditional CTMP dynamics,
which describes its local evolution as a function of the cur-
rent state of its parents in the network. This representation
is natural for describing systems with a sparse structure of
local influences between components.

For most applications of such CTMP models, we need
to perform inference to evaluate the posterior probability
of various queries given evidence. Exact inference requires
exponentiation of the rate matrig. As the rate matrix is
exponential in the number of components, exact computa-
tions are infeasible for more than a few components. Thus,
applications of factored CTMPs require the use of approx-
imate inference.

In many applications, we reason aboyt processes .that In two recent works Nodelman et al. (2005) and Saria
evo:ve over t;hmea SUCh. pro:c:essles clan involve sl,hort t'm%t al. (2007) describe approximate inference procedures
scales (e.g._, e dynamics of molecules) orvery 'long ONegaseq on Expectation Propagation, a variational approxi-
eg., eyolutloq). In bOth examples, there is no obvious d'.s'mation method (Minka, 2001; Heskes and Zoeter, 2002).
crete “time unit” by which the process evolves. Rather, trhese approximation procedures perform local propaga-

is more natural to view the process as changing in a CONon of messages between components (or sub-trajectories

tinuous time: the system is in some state for a certain duraéf components) until convergence. Such procedures can be

tion,_and the_n transitions to another state. The I_anguage %ruite efficient, however they can also introduce a system-
continuous-time Markov processgSTMPs) provides an atic error in the approximation (Fan and Shelton, 2008).

ele_gant mat_heme}tlcal framework to reason.about the prob- More recently, Fan and Shelton (2008) introduced a
ability of trajectories of such systems (Gardiner, 2004). We . : .
rocedure that employs importance sampling and particle

consider Markov processes that are homogeneous in ti : : ;
- fltering to sample trajectories from the network. Such a
and have a finite state space. Such systems are fully deter:

mined by the state spacg the distribution of the process i:)ollce r:;itlcrﬁi?;plslggq plre(?scfedal\](;g tr:)arsngrneygrgfufart% pgrtlerzx?_s
at the initial time, and a description of the dynamics of the 9 P PP

. o ; mation. However, since this is an importance sampler, it
process. These dynamics are specified bgta matrixQ, - D . . R
. . ! : has limited capabilities to propagate evidence “back” to in-
whose off-diagonal entrieg, » are exponential rate inten-

. . . fluence the sampling of earlier time steps. As aresult, when
sities for transitioning from staie to b. Intuitively, we can ) . S

. the evidence is mostly at the end of the relevant time inter-
think of the entryy, » as the rate parameter of an exponen-



val, and is of low probability, the procedure requires manythe state ofX in the closed and semi-open intervals from

samples. A related importance sampler was proposed bip t.

Ng et al. (2005) for monitoring a continuous time process.  The dynamics of a time-homogeneous continuous-time
In this paper we introduce a new stochastic samplingMarkov process are fully determined by thtarkov tran-

procedure for factored CTMPs. The goal is to samplesition function

random system trajectories from the posterior distribution.

Once we have multiple independent samples from this dis- Pab(t) = Pr(XH) = b| X = a),

tribution we can approximate the answer to queries abouth time-h itv imolies that the riaht-hand sid
the posterior using the empirical distribution of the sam-/Nere time-homogeneity implies that the rignt-hand side

ples. The challenge is to sample from the posterior. Whiled.Oes nqt erend OR Prow'ded that thg transmpn .func—
tion satisfies certain analytical properties (continuity, and

generative sampling of a CTMP is straightforward, sam- e :
pling given evidence is far from trivial, as evidence modi- regularity; see Chung (19_60)) the dynaml_cs are fully cap-
tured by a constant matriQQ—the rate, or intensity ma-

fies the posterior probability of earlier time points. . ) .

Markov Chain Monte Carlo (MCMC) procedures cir- trix—whose entrieg, p are defined by
cumvent this problem by sampling a stochastic sequence . Pab(h) — s
of system states (trajectories in our models) that will even- Ga,b = lém %,
tually be governed by the desired posterior distribution.
Here we develop a Gibbs sampling procedure for factoreavhered, p is a multivariate Kronecker delta.
CTMPs. This procedure is initialized by setting an arbi- A Markov process can also be viewed as a generative
trary trajectory which is consistent with the evidence. Itprocess: The process starts in some statéfter spend-
then alternates between randomly picking a compofgnt ing a finite amount of time a4, it transitions, at a random
and sampling a trajectory from the distribution®f con-  time, to a random statk # a. The transition times to the
ditioned on the trajectories of the other components andarious states are exponentially distributed, with rate pa-
the evidence. This procedure is reminiscenblotk Gibbs  rametersy, ». The diagonal elements &f are set such that
sampling(Gilks et al., 1996) as we sample an entire trajec-each row sums up to zero.
tory rather than a single random variable in each iteration. The time-dependent probability distributionp(t),
However, in our approach we need to sample a continuoughose entries are defined by
trajectory.

The crux of our approach is in the way we sample a tra- pa(t) =Pr(X" =a), acs,
jectory for a single component from a process that is con-
ditioned on trajectories of the other components. While’
such a process is Markovian, it is not homogeneous as its dp -
dynamics depends on trajectories of its Markov Blanket as a Q' p. ()
well as on past and present evidence. We show that we can
perform exact sampling by utilizing this Markovian prop- Thus, using th& matrix, we can write the Markov transi-
erty, and that the cost of this procedure is determined by théon function as
complexity of the current trajectories and the sampled one,
and not by a pre-defined resolution parameter. This implies Pap(t) = [eXp(tQ)]mb ’
that the computational time adapts to the complexity of the[hat is, as the, b entry in the matrix resulting from expo-
sampled object. nentiatingQ (using matrix exponentiation).
. . . It is important to note that the master Eq. (1) encom-
2 Continuous-Time Bayesian Networks passes all the statistical properties of the Markov process.

In this section we briefly review the CTBN model (Nodel- There is a one-to-one correspondence between the descrip-
man et al., 2002). Consider ad-component Markov pro- tion of a Markov process by means of a master equa-

atisfies the so-callddrward, or master equation

cess tion, and by means of a “pathwise” characterization (up to
x® _ (Xl(t)v Xét), N X](\?) stochastic equivalence of the latter; see Gikhman and Sko-
. rokhod (1975)).
with state spacé = 5y x Sy X -+ X Sy Continuous-time Bayesian Networksovide a com-

A notational convention: vectors are denoted by bold-pact representation of multi-component Markov processes
face symbols, e.9.X,a, and matrices are denoted by py incorporating two assumptions: (1) every transition in-
blackboard style characters, e.@Q, The states in5 are  yolves a single component; (2) each component undergoes

denoted by vectors of indexes,= (a1, ...,an). Thein-  transitions at a rate which depends only on the state of a
dexesl < i,j7 < M are used to enumerate the componentssybsystem of components.
We use the notatioX (*) andXZ.(t) to denote a random vari- Formally, the structure of a CTBN is defined by as-

able at time. We will usexX[*t, x (!l x[s¥) to denote signing to each componetita set of indicesPar(i) C



{1,...,M} \ {i}. With each component we associate 3 Sampling in a Two Component Process

iti i)l Par(i) i . | Par(s)
a conditional rate matrixQ W|.th entneSqa“bilw 31 Introduction
whereq,; andb; are states oX; andu; is a state oPar(i).

This matrix defines the rate df; as a function of the state e Will start by addressing the task of ;ampling from'
of its parents. Thus, when the parents¥fchange state, @ two components process. The generalization to multi-

the rates governing its transition can change. component processes will follow in the next section.
The formal semantics of CTBNSs is in terms of a joint ~ Consider a two-component CTBNX' = (fg’ Y),
rate matrix for the whole process. This rate matrix is de—Wg?ie dynamics is defined by conditional raes” and
fined by combining the conditional rate matrices Q"% (thatis, X is a parent of” andY" is a parent ofY).
Suppose that we are given partial evidence about the state
M , , of the system. This evidence might contain point observa-
i| Par(4) L . . . .
da,b = Z 9, b:| Pi(a) H Oayb; | - (2)  tions, as well as continuous observations in some intervals,
i=1 J#i of the states of one or two components. Our goal is to sam-
whereP;(a) is a projection operator that project a com- E(I)ena trajectory of X, V') from the joint posterior distribu-

plete assignment to an assignment to tHear(:) compo-
nents. Eq. (2) is, using the terminology of Nodelman et al

(2002), the “amalgamation” of th&/ conditional rate ma- =™ ) . ) . :
IJnltlallze X andY with trajectories that are consistent with

trices. Note the compact representation, which is valid fo h i h domly eith | .
both diagonal and off-diagonal entries. It is also notewor-N€ évidence. Then, we randomly either sample a trajectory

thy that amalgamation is a summation, rather than a prod?’ X given the entire trajectory df and the evidence on

uct; indeed, independent exponential rates are additive. Ié’ ordsa;]mple.gl trajectory ﬁr given tge enélr(: trajectorydof
for example, every component hapossible values ank and the evidence ari. This procedure defines a random

parents, the rate matrix requires onlyd**'(d — 1) pa- walk in the space of X, Y") trajectories. The basic theory
rameters, rather thaf (¢ — 1) of Gibbs sampling suggests that this random walk will con-

The dependency relations between components can pEr9e t_o the distribution ok, }” given the evidence.
To implement such a sampler, we need to be able to

represented graphically as a directed gra@hjn which le th i ¢ . h .
each node corresponds to a component, and each directgg™P'€ the trajectory of one component given the entire

edge defines a parent-child relation. A CTBN consists ofrajectory of the other component' and the ewdgnce. Sup-
such a graph, supplemented with a set\éfconditional pose, we have a fully observed trajectory}onin this case,
rate matrice€)’! P*(), The graph structure has two main observations oX at the extremities of some time interval
roles: (i) it provides a data structure to which parametersstatistically separa_te this interva_l from the rest.of trgject.ory.
are associated: (ii) it provides a qualitative description ofThus, we can restrict our analysis to the following situation:

dependencies among the various components of the syg?e pro%ess IS r.estn%()ed to ?Ot)lmedlnt(?;{)faﬂ“] "’}2? wle are
tem. The graph structure also reveals conditional inded'Ven observationst™™ = 2t% and X'~/ = 2"/, along

pendencies between sets of components (Nodelman et ayvith the entire trajectory of” in [0, T']. The latter consists
2002) of a sequence of statég, ...,yx) and transition times

d(TO =0,71,...,7k,Tk+1 = T). An example of such sce-

Notational conventions: Full trajectories and observe hario is shown in Figure 1(a). The entire problem is now
pointwise values of components are denoted by lower case 9 ) P

lett indexed bv th | i it | agf) reduced to the following question: how can we sample a
e[ ?]rs n ex'e y the (rt? evan |m? l]n ervals, eqg..., trajectory ofX in the interval(0, T') from its posterior dis-
z;". We will usePr(z;”) andPr(z;”") as shorthands tripution?

for Pr(x " = z{") andPr(X [ = zl*1). To approach this problem we exploit the fact thiae
It should be emphasized that even though CTBNs prosub-processX given thaty [0-7] = y[971 js Markovian(al-

vide a succinct representation of multi-component pro-though non-homogeneous in time):

cesses, any inference query still requires the exponenti

tion of the full d™ x d™ dimensional rate matri). For

example, given the state of the system at tilvaadT’, the

Markov bridgeformula is Pr(X® | 105 2T 40Ty = pr(x® | 2) g™ yl=T],

Pr(X® = a|z®, 2™) =

[exp(tQ)]mw),a[exp((T - t)@)]a,m(T) . . . .
exp(TQ) o o . Analysis of such process requires reasoning abput a c_ontln—
o uum of random variables. A natural way of doing so is to
It is the premise of this work that such expressions cannoperform the analysis in discrete time with a finite time gran-
be computed directly, thus requiring approximation algo-ularity /, and examine the behavior of the system when we
rithms. takeh | 0.

The approach we take here is to use a Gibbs sampler
(Gilks et al., 1996) over trajectories. In such a sampler, we

qf’roposition 3.1 The following Markov property holds for
all t > s,

3.2 Time Granularized Process




To do so, we introduce some definitions. SuppBse of transitions. The Markovian property of the conditional
is the probability function associated with a continuous-processX enables doing so using a sequential procedure.
time Markov process with rate matri. We define the Our procedure starts by sampling the first transition
h-coarseningof Pr to be Pry,, a distribution over the ran- time. It then samples the new state the transition leads to.
dom variablesx (', X" x 2" which is defined by  As this new sample point statistically separates the remain-

the dynamics ing interval from the past, we are back with the initial prob-
lem yet with a shorter interval. We repeat these steps until
Prh(X(Hh) =b| X0 = a) = dapb + I qabs the entire trajectory is sampled; it terminates once the next
o ) transition time is past the end of the interval.
which is the Taylor expansion ¢éxp(tQ)]a.s, truncated Our task is to sample the first transition time and the
at the linear term. Wheh < ming(—1/qa,a), PraiS @ pext state, conditioned o (0 = z(0, X(T) — 4(T) a5
well-defined distribution. well as the entire trajectory af in [0, 7]. To sample this

We would like to show that the measure, (A) of an  transition time, we first define the conditional cumulative
eventA converges t@r(A) whenh | 0. To do so, how-  distribution functionF'(¢) that X stays in the initial state
ever, we need to define thhecoarsening of an event. Given for 3 time less that:
atime point, define[t|, and[t] to be the rounding down

. . — 1 _ 0,t] _ ,.(0 0) ,.(T 0,T

and up oft to the nearest multiple of. For point events Ft)=1-Pr (X F=2©@12@, 20 ]) ®3)

: t tln) _ . .
we dff|ne[X( ) = a],, to be the even (1")") = @ and i we can evaluate this function, then we can sample the
[X") = a], to the eventXI"") = a. For an inter- first transition timer by inverse transform sampling — we
val event, we defindX*! = a, 4]; to be the event draw¢ from a uniform distribution in the intervab, 1], and
XN = apg, XN =g x () — setr = F1(€); see Figure 1ab,
a,,. Similarly, we can define the coarsening of events The Markov property of the conditional process allows
over only one component and composite events. us to decompose the probability thatremains in its initial

Note that the probability of any given trajectory tends State until time. Denoting the probability of"'s trajectory
to zero ash — 0. The difficulty in working directly in the ~ and of X remaining in its initial state until imeby
continuous-time formu_lgtion is that we co_ndition on events ppast(t) _ Pr(X(o,t] _ x(o)7 y((),t] |x(0), y(o))’
that have zero probability. The introduction of a granular- - . .
ized process allows us to manipulate well-defined condiand the probability of future observations given the state of

tional probabilities, which remain finite és— 0. (X, 1) by
i . . future(t) _ PI‘(LE(T) (¢,7] |X(t) - (t))
Theorem 3.2 Let A and B be point, interval, or a finite Py - Y =nyr)
combination of such events. Then We can then write the probability thaf is in statex(®)
until ¢ as
lim Pry, ([A]s | [B]n) = Pr(4 | B) pas future,
h10 PP(L) - pleTe(t)
Pr (X(O’t] = 1‘(0)|I(0), I(T)a y[O’T]) = pfuture((;;)
(0
From now on, we will drop théA];, notation, and assume o (4)
it implicitly in the scope ofPry, (). Lamentably, while the reasoning we just described is

A simple minded approach to solve our problem is toseemingly correct, all the terms in Eq. (4) are equal to
work with a given finiteh and use discrete sampling to (, since they account for the probability Bfs trajectory.
sample trajectories in the coarsened model (thus, workingjowever, as we shall see, if we evaluate this equation care-
with a dynamical Bayesian network If 4 is sufficiently  fully we will be able to define it with terms that decompose
small this might be a reasonable approximation to the dethe problem in a similar manner.
sired distribution. However, this approach suffers from g efficiently compute these terms we exploit the fact
sub-optimality due to this fixed time granularity — a too that although the process is not homogeneous, the dynam-
coarse granularity leads to inaccuracies, while a too finges of the joint process within an intervé, 74.41) , in
granularity leads to computational overhead. Moreoveryhich v has a fixed valuey,, is characterized by ain-
when different components evolve at different rates, thisgleunnormalized rate matrix whose entries dependan
trade-off is governed by the fastest component. This allows us to adopt forward-backwardpropagation

, , ! , scheme. We now develop the details of these propagations.
3.3 Sampling a Continuous-Time Trajectory
To avoid the trade-offs of fixed time granularity we exploit 34 COmPUtingpP*<i()
the fact that while a single trajectory is defined over infiniteWe begin with expressingP®{t) as a product of local
time points, it involves only a finite number of transitions terms. Recall thap?s{¢) is the probability thatX is con-
in a finite interval. Therefore, instead of sampling statesstant until timet. We denote by?**(t) the h-coarsened
at different time points, we only sample a finite sequenceversion ofpP2s{t).
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Figure 1: lllustration of sampling of a single component with three states. (a) Top panel: sampling scenario, with a
complete trajectory fo¥’, that has four transitions af, . . ., 74, and point evidence oA at times0 and?". Bottom panel:

the cumulative distributior¥'(¢), that X changes states before timgiven this evidence We sample the next transition
time by drawing¢ from a uniform distribution and setting = F~'(¢). Note that as(®) # z(T), F(T) = 1. The bar

graph represents the conditional distribution of the next state, given a transition at. t(rh)aSame sampling procedure

for the second transition. He€(T") < 1 since it is not necessary fof to change its state. (c and d) The two components
used in computing — F'(t): pP2%(¢) the probability that\ stays with a constant value until timendY” has the observed
trajectory until this time; anq]if“t“re( ) the probability thatX transition’s from state: at¢ to its observed state at tin¥é

andY follows its trajectory front to T'.

To characterize the dynamics within intervals
(1%, Te+1) We defineconstant propagator functions

pzaSt(t) = H ¢Iz z(o) yll?j(l+1|93(0> ¢le1?(0) (t=7)
o () =
Pry (XA — g y (A1 — ) x(1) — 5 y(1) — ) whereA; = 7141 — 7.
To compute the constant propagator functions, we real-
ize that in each step within the interv@l, ] the state does
These functions determine the probability that= = and ~ Not change. Thus,
Y = ythroughout an interval of lengtht if they start with
these values. he(At)=[1+h-(q
At time 7,1 the Y component changes it value from
yr 10 yx41. The transition probability at this point is-  We define
Yix . Thus, from the Markov property of the joint

qyk,-,yk,+1\1?(0)

process it follows that fot € (75, 741) ¢5(Al) = 1,3]8 P (AL

XY
z,z|y

LAat)
Y|X i

+ Dy y|a

z, x|y y,ylx

) = (A, +ay )



We conclude that if This terms is similar to transition matrix of a Markov pro-
cess. Note, however th& is not a stochastic rate matrix,
past/;\ Y as the rows do not sum up t In fact, the sum of the
pro(t) = oY G0y (T — T _ ) > TR ; )
® H s T, yl“'xw) o ) rows in negative, which implies that the entriesSify At)
tend to get smaller witk\¢. This matches the intuition that

then fort € (7, Tio41) this term should capture the probability of the evidence that
past ) Y = y for the whole interval.
Iﬁ% phhk = pP2(t) To summarize, if we define fare (7x, Ti11)
3.5 Computingpre (t) a ,
putingp PU(L) = SV (71 —t) l H TY9+1SY(A) | ey,
We now turn to computing™®(¢). Unlike the previous I=k+1
case, here we need to compute this term for every possible
value ofz. We do so by backward dynamic programing then future
(reminiscent of backward messages in HMMs). lim P (t) = pre(r)
We denote byp{""*(t) a vector with entriep}"u"(t). hio REF
Note that,p""'®(T') = e,(r) Wheree, is the unit vector 3¢ Putting it All Together
with 1 in positionz. Next, we define gropagator matrix
SY(At) with entries Based on the above arguments.
pas future

Shap(Bt) = Pry, (X(O,t] = 200 4T, y[O,T]) _ t(fttph o (

Prh(X(tJrAt) _ b,Y(t’HAt] _ y|X(t) _ a,Y(t) =) p}g ;Eg) (0)

This matrix provides the dynamics of in an interval  Now, if t € (74, 7411), then

whereY is constant. We can use it to compute the prob-

ability of transitions between states &f in the intervals Pr (X(O,t] _ x(o)|$(o) (D) y[O.,T])
(Tk, Te+1), fOreveryr, < s <t < 741

Pa51<t future
PRVE(s) = Sp (1 5)pUe(r) -

im )Py a0 (¢

mlo plie (0)

At transition pointsr, we need to take into account the [h_kppaskt)] h_(K_k)pfuture )]
probability of a change. To account for such transitions, we = 1 h hya!

1m
K ,.future
define a diagonal matrig*-#’ whose(a, ) entry isq, ,‘a hl0 h=Kp"e (0)
Using this notation and the Markov property of’ ‘the joint Pas(t) ~future(t)
process the conditional probability of future observations = W
f . b o) ( )
or7, <t < Tp4+11S
plure(yy — Thus, in both numerator and denominator we must account
h X for the observation of{ transitions oft”, which have prob-
- Ky oo .
Yb—1 _ YY1 QU ability of o(h**). Since these term cancels out, we remain
w7 (k1 1) lH—l nT Sh(A)| ez with the conditional probability over the event of interest.

It remains to determine the form of the propagator ma-3-7 Forward Sampling
trix. At time granularityh, we can write the probability of To Samp|e an entire trajectory we first Compyﬁg{ure(t)
transitions between states &f while Y = y as a product  only at transition times from the final transition to the start.
of transition matrices. Thus, We sample the first transition time by drawing a ran-
SY(A) = (I +h R )LA;Jh, dom_valueg from a uniform di;tribution in[0, 1]._ Now
h - Xly we find 7 such thatF(7) = ¢ in two steps: First, we
sequentially search for the intervaf, 7.1] such that
F(ry) < F(r) < F(114+1) by propagatings®s{(t) for-

whereRX is the matrix with entries

qi{l‘)?; a#b ward through transition points. Second, we search the ex-
rﬁy - act time point within[ry, 7,+1] using binary search with
’ qX\Y + qY\X a=b steps to obtain accuracy of “A,. This step requires com-
waly " Tyyle putation of S¥*(2~L'A;,) and its exponent§¥+(271Ay),
We now can define l=1,...,L—1.

Once we sample the transition timewe need to com-

. ARX Y
SY(At) = 1,31(} Sh(At) = (20 pute the probability of the new state &f. Using similar



arguments as the ones we discussed above, we find that

Pr (Xw*) — 2| X100 = 5O x(t1) £ 4(0) y[o,T}) —

XY future
Q) 5 " Pz (t)

D wr e ® qf«'{w, - prtre(t)
Thus, we can sample the next state by using the pre
computed value of""“'e(¢) att.

Once we sample a transition (time and state), we car
sample the next transition in the interal T'). The pro-
cedure proceeds while exploiting propagators which have
already been computed. It stops whi(il') < &, i.e., the 1072
next sampled transition time is greater tHAn Figure 1 10
illustrates the conditional distributions of the first two tran-
sitions.

Averege Relative Error

10
Number of Samples

o ) Figure 2: Relative error versus burn-in and number of sam-
4 Sampling in a Multi-Component Process ples.

The generalization from a two-component process to a gen-

eral one is relatively straightforward. At each step, we neeghjtia| packward propagation are defined by these transi-
to sample a single componedi; conditioned on trajec-  tions, Therefore, the complexity of the backward procedure

tories inY = (Xi1,...,Xi 1, Xit1,..., Xar). To Save  gcgles with the rate of; and its Markov blanket.
computations we exploit the fact that given complete tra-

jectories over the Markov blanket f;, which is the com- 5 Experimental Evaluation

ponent set ofX;’s parents, children and its children’s par-

ents, the dynamics i; is independent of the dynamics of we evaluate convergence properties of our procedure on a

all other components (Nodelman et al., 2002). chain network presented in Fan and Shelton (2008), as well
Indeed, the structured representation of a CTBN allowsas on related networks of various sizes and parametriza-

computations using only terms involving the Markov blan-tions. The basic network contains 5 componenfs, —

ket. To see that, we first notice that within an interval whoseX; — ...X,, with 5 states each. The transition rates

state isY’, = y the propagator matrix involves terms which of X, suggest a tendency to cycle in 2 possible loops:

depend only on the parents af; qul‘z = qfé'lza_"(") and so — s1 — s2 — sp andsy — s3 — s4 — so; Whereas

terms which depend on the other members of the Markovor i > 0, X; attempts to follow the state of;_, — the

blanket, transitioanglf“1 has higher intensity whea = b. The
Y|X; _ Z XlPati) inFensities ofXy in the origina}l network are symmetric rel-
Ty y|z; T35 u; Y ative to the two loops. We slightly perturbed parameters to

Jechild(i) break symmetry since the symmetry between the two loops

wherec, does not depend on the state¥f. Therefore, tends to yield untypically fast convergence.

we define the reduced rate matix,|,,: To obtain a reliable convergence assessment, we should
) generate samples from multiple independent chains which
X |Par(4) s . e .
. Qa0 b, a#b are initialized from an over-dispersed distribution. Aim-
Tfiws(z) = ing to construct such samples, our initialization procedure

Xi|Par(i) Xj|Pas)

oo+ ZjeChild(i) G afm @= b draws for each component a rate matrix by choosing an as-

signment to its parents from a uniform distribution and tak-
where,v is the projection of to the Markov blanket. Con-  jng the corresponding conditional rate matrix. Using these
sequently the local propagator matrix becomes matrices it samples a trajectory that is consistent with evi-
S°(t) = exp(t - Ry, o) (5) dence independently for every cqmponent using the b'ack—
ward propagation-forward sampling strategy we described
Importantly, this matrix differs fron§¥ (¢) by a scalar fac- above.
tor of exp(t - ¢y ). The same factor arise when replacing the A crucial issue in MCMC sampling is the time it takes
term in the exponent of the constant propagator. Thereforehe chain tamix — that is, sample from a distribution that
these terms cancel out upon normalization. is close to the target distribution rather than the initial dis-
This development also shows that when sampliyg tribution. It is not easy to show empirically that a chain has
we only care about transition points of one of the tra-mixed. We examine this issue from a pragmatic perspective
jectories in MB4). Thus, the intervals computed in the by asking what is the quality of the estimates based on sam-
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Figure 3: Error versus burn-in for different evidence sets.Figure 4: Effect of conditional transition probability sharp-
For each set we specify the average log-likelihood of theness on mixing time.
samples after convergence.

order of magnitude, however it is not correlated with the
log-likelihood. Note that in this specific experiment slower
nvergence occurs when continuous evidence is absent.

ples taken at different number of “burn-in” iterations after
the initialization, where a single iteration involves sampling c
each of the components once. We examine the estimates ?ﬁ

- e ; : e reason for this may be the existence of multiple possi-
expected sufficient statistics that are required for Iearnm%Ie paths that cycle through state zero. Thatis, the posterior
CTBN's — residence time of components in states and the | '

- . ,distribution is , in a sense, multi-modal.
number of transitions given the state of the component’s .
To further explore the effect of the posterior's land-

parent (Nodelman et al., 2003). We measure estimation S
16,-0,] scape, we tested networks with similar total rate of tran-

quality by theaverage relative errof); === whered;  itions, but with varying level of coupling between compo-
is exact value of thglth sufficient statistics calculated us- nents. Stronger Coup"ng of Components leads to a Sharper

ing numerical integration ang is the approximation. joint distribution. To achieve variations in the coupling
To make the task harder, we chose an extreme casge consider variants of the chain CTBN where we set
by setting evidenceX?) = 3, (the vector ofso), and Faply = % and gy = Ga,aly - Tably Where
’ c#a\Qa,cly

3) — . “
X = (s0, 51,53, 50, 51). We then sampled the process , j5 4 non-negative sharpness parametenAs 0 the net-

using multiple random starting points, computed estimateqyq i hecomes smoother, which reduces coupling between
expected statistics, and compared them the exact expectgimponents. However, the stationary distribution is not

statistics. Figure 2 shows the behavior of the average relat‘ending to a uniform one because we do not alter the di-

tive error taken over all > 0.05 versus the sample size for ,4n5] elements. Figure 4 shows convergence behavior for
different number of burn-in iterations. Note that when us-gjtarent values of where estimated statistics are averaged

ing longer burn-in, the error decreases atara®®@fn),  oyer 1,000 samplers. As we might expect, convergence is
wheren is the number of samples, which is what we would ¢, <ter as the network becomes smoother.

expect from theory, if the samples where totally indepen-
dent. This implies that at this long burn-in the error due to
the sampling process is smaller than the error contribute

by the number of samples. ] . As exact inference is infeasible in such networks we mea-
To study further the effect of evidence's likelihood, g req relative error versus estimations taken from long
we measured error versus burn-in using 10,000 samples if,q. Specifically, for eaclV, we generated 1000 sam-
our origipgl evidepce set, and four additional ones. Theples by running 100 independent chains and taking sam-
first addm(?nal evidence, denoted ley is generated by a5 after 10,000 rounds as well as additional 9 samples
settmgX( ) = &, forward sampling a random trajectory ,om each chain every 1,000 rounds. Using these samples
and taking the complete traject(()or)y dfj as(igwd(ince. we estimated the target sufficient statistics. To avoid aver-
Additional sets are: e; ={X" =35,X" =3}  44ing different numbers of components, we compared the
es={X® =5} and an extremely unlikely case relative error in the estimate of 5 components for networks
es = {X© =5, X\ = 50, X® = (50,51, 53,5,51)}. of different sizes. Figure 5 shows the results of this exper-
Figure 3 illustrates that burn-in period may vary by animent. As we can see, convergence rates decay moderately

Next we evaluated the scalability of the algorithm
y generating networks containing additional components
ith an architecture similar to the basic chain network.



100

80

60 -3

40

...........

Estimated Relative Error

20

# Transitions within Component
Q
=
I}
7

200 400 600 800 1000 1200 0 50 100 150 200 250
Number of Burmin Rounds Number of lterations
120 ‘
Figure 5: Convergence of relative error in statistics of first emmeananpenane
five components in networks of various sizes. Errors are £ 100} { X
. - . £ H —™
computed with respect to statistics that are generated witl £ H X
S e
N =10, 000 rounds. > 80ff 2
= 1 _X
e 3
g ----- Others
2 60 1
2
10° S
o S
© [
2 *
B
(7]
= 0 50 100 150 200 250
% Number of lterations
Eqo}
(%]
L

Figure 7: The effect of different time scales on the sam-
pling. In this networkX;’s rate is twice as fast thaki; ;,'s
< . - o ‘ : rate. (top) The number transitions sampled for each of the
10 10 Run}iro“e . S;Smds 10 10 first four components as a function of iteration number.
(bottom) The number of intervals of Markov neighbors of

_ _ o each component as a function of iteration number.
Figure 6: Relative error versus run-time in seconds for var-

ious network sizes.

created a chain network where each component has rates

that are of half the magnitude of its parent. This means that

. . the first component tends to switch state twice as fast as the

with th? size of the r'1etwork. second, the second is twice as fast as the third, and so on.
While for experimental purposes we generate manyyhen we examine the number of transitions in the sampled

samples independently. A practical strategy is 0 run aiectories Figure 7, we see that indeed they are consistent

small number of chains in parallel and then coIIe_ct take aith these rates, and quickly converge to the expected num-
large number of samples from each. We tested this strateqyer, since in this example the evidence is relatively weak.

by generating 10 independent chain for various network§yhen we examine the number of intervals in the Markov
and estimating statistics from all samples except the firsf5nket of each components, again we see that neighbors

20%. Using these, we measured how the behavior of errog ¢, components have more intervals. In this graph
versus CPU run-time scales with network size. Average rejg o anomaly since it does not have a parent.
sults of 9 independent tests are shown in Figure 6. Roughly,
the run-time required for a certain level of accuracy scale% Discussion
linearly with network size.

Our sampling procedure is such that the cost of samin this paper we presented a new approach for approx-
pling a component depends on the time scales of its Markoimate inference in Continuous-Time Bayesian Networks.

neighbors and its own rate matrix. To demonstrate that, w8y building on the strategy of Gibbs sampling. The core



of our method is a new procedure for exact sampling of a
trajectory of a single component, given evidence on its end
points and the full trajectories of its Markov blanket com-
ponents. This sampling procedure adapts in a natural way
to the time scale of the component, and is exact, up to a
predefined resolution, without sacrificing efficiency.

This is the first MCMC sampling procedure for this
type of models. As such it provides an approach that
can sample from the exact posterior, even for unlikely ev-
idence. As the current portfolio of inference procedures
for continuous-time processes is very small, our procedure
provides another important tool for addressing these mod-
els. In particular, since the approachasymptotically un-
biasedin the number of iterations it can be used to judge
the systematic bias introduced by other, potentially faster,
approximate inference methodologies, such as the one of
Saria et al. (2007).

Itis clear that sampling complete trajectories is not use-
ful in situations where we expect a very large number of
transitions in the relevant time periods. However, in many
applications of interest, and in particular our long term goal
of modeling sequence evolution (El-Hay et al., 2006), this
is not the case. When one or few components transitions
much faster than neighboring components, then we are es-
sentially interested in its average behavior (Friedman and
Kupferman, 2006). In such situations, it would be useful to
develop a Rao-Blackwellized sampler that integrates over
the fast components.

As with many MCMC procedures, one of the main con-
cerns is the mixing time of the sampler. An important di-
rection for future research is the examination of methods
for accelerating the mixing - such &etropolis-coupled
MCMC or simulated temperinfGilks et al., 1996) - as well
as a better theoretic understanding of the convergence prop-
erties.
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