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Abstract

The paper introduces AND/OR importance sam-

pling for probabilistic graphical models. In con-

trast to importance sampling, AND/OR impor-

tance sampling caches samples in the AND/OR

space and then extracts a new sample mean from

the stored samples. We prove that AND/OR im-

portance sampling may have lower variance than

importance sampling; thereby providing a theo-

retical justification for preferring it over impor-

tance sampling. Our empirical evaluation demon-

strates that AND/OR importance sampling is far

more accurate than importance sampling in many

cases.

1 Introduction

Many problems in graphical models such as computing

the probability of evidence in Bayesian networks, solution

counting in constraint networks and computing the partition

function in Markov random fields are summation problems,

defined as a sum of a function over a domain. Because these

problems are NP-hard, sampling based techniques are often

used to approximate the sum. The focus of the current paper

is on importance sampling.

The main idea in importance sampling [Geweke, 1989,

Rubinstein, 1981] is to transform the summation problem

to that of computing a weighted average over the domain

by using a special distribution called the proposal (or im-

portance) distribution. Importance sampling then generates

samples from the proposal distribution and approximates

the true average over the domain by an average over the

samples; often referred to as the sample average. The sam-

ple average is simply a ratio of the sum of sample weights

and the number of samples, and it can be computed in a

memory-less fashion since it requires keeping only these

two quantities in memory.

The main idea in this paper is to equip importance sampling

with memoization or caching in order to exploit conditional

independencies that exist in the graphical model. Specifi-

cally, we cache the samples on an AND/OR tree or graph

[Dechter and Mateescu, 2007] which respects the structure

of the graphical model and then compute a new weighted

average over that AND/OR structure, yielding, as we show,

an unbiased estimator that has a smaller variance than the

importance sampling estimator. Similar to AND/OR search

[Dechter and Mateescu, 2007], our new AND/OR impor-

tance sampling scheme recursively combines samples that

are cached in independent components yielding an increase

in the effective sample size which is part of the reason that

its estimates have lower variance.

We present a detailed experimental evaluation comparing

importance sampling with AND/OR importance sampling

on Bayesian network benchmarks. We observe that the

latter outperforms the former on most benchmarks and in

some cases quite significantly.

The rest of the paper is organized as follows. In the next

section, we describe preliminaries on graphical models, im-

portance sampling and AND/OR search spaces. In sections

3, 4 and 5 we formally describe AND/OR importance sam-

pling and prove that its sample mean has lower variance

than conventional importance sampling. Experimental re-

sults are described in section 6 and we conclude with a dis-

cussion of related work and summary in section 7.

2 Preliminaries

We represent sets by bold capital letters and members of a

set by capital letters. An assignment of a value to a variable

is denoted by a small letter while bold small letters indicate

an assignment to a set of variables.

Definition 2.1 (belief networks). A belief network (BN) is

a graphical model R = (X,D,P), where X = {X1, . . . ,Xn}
is a set of random variables over multi-valued domains

D = {D1, . . . ,Dn}. Given a directed acyclic graph G over

X, P = {Pi}, where Pi = P(Xi|pa(Xi)) are conditional prob-

ability tables (CPTs) associated with each Xi. pa(Xi) is

the set of parents of the variable Xi in G. A belief net-

work represents a probability distribution over X, P(X) =
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Figure 1: (a) Bayesian Network, (b) Pseudo-tree (c) AND/OR tree (d) AND/OR search graph

∏n
i=1 P(Xi|pa(Xi)). An evidence set E = e is an instantiated

subset of variables.The moral graph (or primal graph) of a

belief network is the undirected graph obtained by connect-

ing the parent nodes and removing direction.

Definition 2.2 (Probability of Evidence). Given a belief

network R and evidence E = e, the probability of evidence

P(E = e) is defined as:

P(e) = ∑
X\E

n

∏
j=1

P(X j|pa(X j))|E=e (1)

The notation h(X)|E=e stands for a function h over X \E

with the assignment E = e.

2.1 AND/OR search spaces

We can compute probability of evidence by search, by ac-

cumulating probabilities over the search space of instanti-

ated variables. In the simplest case, this process defines an

OR search tree, whose nodes represent partial variable as-

signments. This search space does not capture the struc-

ture of the underlying graphical model. To remedy this

problem, [Dechter and Mateescu, 2007] introduced the no-

tion of AND/OR search space. Given a bayesian network

R = (X,D,P), its AND/OR search space is driven by a

pseudo tree defined below.

Definition 2.3 (Pseudo Tree). Given an undirected graph

G = (V,E), a directed rooted tree T = (V,E) defined on all

its nodes is called pseudo tree if any arc of G which is not

included in E is a back-arc, namely it connects a node to an

ancestor in T .

Definition 2.4 (Labeled AND/OR tree). Given a graphi-

cal model R = 〈X,D,P〉, its primal graph G and a back-

bone pseudo tree T of G, the associated AND/OR search

tree, has alternating levels of AND and OR nodes. The OR

nodes are labeled Xi and correspond to the variables. The

AND nodes are labeled 〈Xi,xi〉 and correspond to the value

assignments in the domains of the variables. The structure

of the AND/OR search tree is based on the underlying back-

bone tree T . The root of the AND/OR search tree is an OR

node labeled by the root of T .

Each OR arc, emanating from an OR node to an

AND node is associated with a label which can

be derived from the CPTs of the bayesian network

[Dechter and Mateescu, 2007]. Each OR node and AND

node is also associated with a value that is used for com-

puting the quantity of interest.

Semantically, the OR states represent alternative assign-

ments, whereas the AND states represent problem de-

composition into independent subproblems, all of which

need be solved. When the pseudo-tree is a chain,

the AND/OR search tree coincides with the regular OR

search tree. The probability of evidence can be com-

puted from a labeled AND/OR tree by recursively com-

puting the value of all nodes from leaves to the root

[Dechter and Mateescu, 2007].

Example 2.5. Figure 1(a) shows a bayesian network over

seven variables with domains of {0,1}. F and G are ev-

idence nodes. Figure 1(c) shows the AND/OR-search tree

for the bayesian network based on the Pseudo-tree in Figure

1(b). Note that because F and G are instantiated, the search

space has only 5 variables.

2.2 Computing Probability of Evidence Using

Importance Sampling

Importance sampling [Rubinstein, 1981] is a simulation

technique commonly used to evaluate the sum, M =

∑x∈X f (x) for some real function f . The idea is to generate

samples x1, . . . ,xN from a proposal distribution Q (satisfy-

ing f (x) > 0 ⇒ Q(x) > 0) and then estimate M as follows:

M = ∑
x∈X

f (x) = ∑
x∈X

f (x)

Q(x)
Q(x) = EQ[

f (x)

Q(x)
] (2)

M̂ =
1

N

N

∑
i=1

w(xi) , where w(xi) =
f (xi)

Q(xi)
(3)

w is often referred to as the sample weight. It is known that

the expected value E(M̂) = M [Rubinstein, 1981].

To compute the probability of evidence by importance sam-

pling, we use the substitution:

f (x) =
n

∏
j=1

P(X j|pa(X j))|E=e (4)

Several choices are available for the proposal distribu-

tion Q(x) ranging from the prior distribution as in likeli-

hood weighting to more sophisticated alternatives such as



IJGP-Sampling [Gogate and Dechter, 2005] and EPIS-BN

[Yuan and Druzdzel, 2006] where the output of belief prop-

agation is used to compute the proposal distribution.

As in prior work [Cheng and Druzdzel, 2000], we as-

sume that the proposal distribution is expressed in a fac-

tored product form: Q(X) = ∏n
i=1 Qi(Xi|X1, . . . ,Xi−1) =

∏n
i=1 Qi(Xi|Yi), where Yi ⊆ {X1, . . . ,Xi−1}, Qi(Xi|Yi) =

Q(Xi|X1, . . . ,Xi−1) and |Yi| < c for some constant c. We

can generate a full sample from Q as follows. For i =

1 to n, sample Xi = xi from the conditional distribution

Q(Xi|X1 = x1, . . . ,Xi−1 = xi−1) and set Xi = xi.

3 AND/OR importance sampling

We first discuss computing expectation by parts; which

forms the backbone of AND/OR importance sampling. We

then present the AND/OR importance sampling scheme

formally and derive its properties.

3.1 Estimating Expectation by Parts

In Equation 2, the expectation of a multi-variable function

is computed by summing over the entire domain. This

method is clearly inefficient because it does not take into

account the decomposition of the multi-variable function as

we illustrate below.

Consider the tree graphical model given in Figure 2(a).
Let A = a and B = b be the evidence variables. Let
Q(ZXY ) = Q(Z)Q(X |Z)Q(Y |Z) be the proposal distribu-
tion. For simplicity, let us assume that f (Z) = P(Z),
f (XZ) = P(Z|X)P(A = a|X) and f (Y Z) = P(Z|Y )P(B =
b|Y ). We can express probability of evidence P(a,b) as:

P(a,b) = ∑
XY Z

f (Z) f (XZ) f (YZ)

Q(Z)Q(X |Z)Q(Y |Z)
Q(Z)Q(X |Z)Q(Y |Z)

= E

[
f (Z) f (XZ) f (YZ)

Q(Z)Q(X |Z)Q(Y |Z)

]
(5)

We can decompose the expectation in Equation 5 into
smaller components as follows:

P(a,b) = ∑
Z

f (Z)Q(Z)

Q(Z)
(

∑
X

f (XZ)Q(X |Z)

Q(X |Z)

)(

∑
Y

f (Y Z)Q(Y |Z)

Q(Y |Z)

)
(6)

The quantities in the two brackets in Equation 6 are, by def-
inition, conditional expectations of a function over X and Y
respectively given Z. Therefore, Equation 6 can be written
as:

P(a,b) = ∑
Z

f (Z)

Q(Z)
E

[
f (XZ)

Q(X |Z)
|Z

]
E

[
f (Y Z)

Q(Y |Z)
|Z

]
Q(Z) (7)

By definition, Equation 7 can be written as:

P(a,b) = E

[
f (Z)

Q(Z)
E

[
f (XZ)

Q(X |Z)
|Z

]
E

[
f (Y Z)

Q(Y |Z)
|Z

]]
(8)

We will refer to Equations of the form 8 as expectation by

parts borrowing from similar terms such as integration and

summation by parts. If the domain size of all variables is

d = 3, for example, computing expectation using Equa-

tion 5 would require summing over d3 = 33 = 27 terms

while computing the same expectation by parts would re-

quire summing over d +d2 +d2 = 3+32 +32 = 21 terms.

Therefore, exactly computing expectation by parts is clearly

more efficient.

Importance sampling ignores the decomposition of expec-

tation while approximating it by the sample average. Our

new algorithm estimates the true expectation by decompos-

ing it into several conditional expectations and then approx-

imating each by an appropriate weighted average over the

samples. Since computing expectation by parts is less com-

plex than computing expectation by summing over the do-

main; we expect that approximating it by parts will be eas-

ier as well. We next illustrate how to estimate expectation

by parts on our example Bayesian network given in Figure

2(a).

Assume that we are given samples

(z1,x1,y1), . . . ,(zN ,xN ,yN) generated from Q decom-
posed according to Figure 2(a). For simplicity, let {0,1} be
the domain of Z and let Z = 0 and Z = 1 be sampled N0 and

N1 times respectively. We can approximate E
[

f (XZ)
Q(X |Z) |Z

]

and E
[

f (Y Z)
Q(Y |Z) |Z

]
by ̂gX (Z = j) and ̂gY (Z = j) defined

below:

̂gX (Z = j) =
1

N j

N

∑
i=1

f (xi,Z = j)I(xi,Z = j)

Q(xi,Z = j)

̂gY (Z = j) =
1

N j

N

∑
i=1

f (yi,Z = j)I(yi,Z = j)

Q(yi,Z = j)
(9)

where I(xi,Z = j) (or I(yi,Z = j)) is an indicator function

which is 1 iff the tuple (xi,Z = j) ( or (yi,Z = j) ) is gener-

ated in any of the N samples and 0 otherwise.

From Equation 8, we can now derive the following unbiased
estimator for P(a,b):

P̂(a,b) =
1

N

1

∑
j=0

N j f (Z = j) ̂gX (Z = j) ̂gY (Z = j)

Q(Z = j)
(10)

Importance sampling on the other hand would estimate
P(a,b) as follows:

P̃(a,b) =
1

N

1

∑
j=0

N j
f (Z = j)

Q(Z = j)

×
1

N j

N

∑
i=1

f (xi,Z = j) f (yi,Z = j)

Q(xi|Z = j)Q(Y i|Z = j)
I(xi,yi,Z = j) (11)

where I(xi,yi,Z = j) is an indicator function which is 1 iff

the tuple (xi,yi,Z = j) is generated in any of the N samples

and 0 otherwise.
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Figure 2: (a) Bayesian Network, its CPTs, (b) Proposal Distribution and Samples (c) AND/OR sample tree

Equation 10 which is an unbiased estimator of expectation

by parts given in Equation 8 provides another rationale for

preferring it over the usual importance sampling estimator

given by Equation 11. In particular in Equation 10, we

estimate two functions defined over the random variables

X |Z = z and Y |Z = z respectively from the generated sam-

ples. In importance sampling, on the other hand, we esti-

mate a function over the joint random variable XY |Z = z us-

ing the generated samples. Because the samples for X |Z = z

and Y |Z = z are considered independently in Equation 10,

N j samples drawn over the joint random variable XY |Z = z

in Equation 11 correspond to a larger set N j ∗N j = N2
j of

virtual samples. We know that [Rubinstein, 1981] the vari-

ance (and therefore the mean-squared error) of an unbiased

estimator decreases with an increase in the effective sample

size. Consequently, our new estimation technique will have

lower error than the conventional approach.

In the following subsection, we discuss how the AND/OR

structure can be used for estimating expectation by parts

yielding the AND/OR importance sampling scheme.

3.2 Computing Sample Mean in AND/OR-space

In this subsection, we formalize the ideas of estimating

expectation by parts on a general AND/OR tree starting

with some required definitions. We define the notion of an

AND/OR sample tree which is restricted to the generated

samples and which will be used to compute the AND/OR

sample mean. The labels on this AND/OR tree are set to

account for the importance weights.

Definition 3.1 (Arc Labeled AND/OR Sample Tree).

Given a a graphical model R = 〈X,D,P〉, a pseudo-tree

T (V,E) , a proposal distribution Q = ∏n
i=1 Q(Xi|Anc(Xi))

such that Anc(Xi) is a subset of all ancestors of Xi in

T , a sequence of assignments (samples) S and a complete

AND/OR search tree φT , an AND/OR sample tree SAOT is

constructed from φT by removing all edges and correspond-

ing nodes which are not in S i.e. they are not sampled.

The Arc-label for an OR node Xi to an AND node Xi = xi

in SAOT is a pair 〈w,#〉 where:

• w = P(Xi=xi,anc(xi))
Q(Xi=xi|anc(xi))

is called the weight of the arc.

anc(xi) is the assignment of values to all variables

from the node Xi to the root node of SAO and P(Xi =
xi,anc(xi)) is the product of all functions in R that

mention Xi but do not mention any variable ordered

below it in T given (Xi = xi,anc(xi)).

• # is the frequency of the arc. Namely, it is equal to

the number of times the assignment (Xi = xi,anc(xi))
is sampled.

Example 3.2. Consider again the Bayesian network given

in Figure 2(a). Assume that the proposal distribution

Q(XY Z) is uniform. Figure 2(b) shows four hypotheti-

cal random samples drawn from Q. Figure 2(c) shows the

AND/OR sample tree over the four samples. Each arc from

an OR node to an AND node in the AND/OR sample tree

is labeled with appropriate frequencies and weights accord-

ing to Definition 3.1. Figure 2(c) shows the derivation of

arc-weights for two arcs.

The main virtue of arranging the samples on an AND/OR

sample tree is that we can exploit the independencies to de-

fine the AND/OR sample mean.

Definition 3.3 (AND/OR Sample Mean). Given a

AND/OR sample tree with arcs labeled according to Def-

inition 3.1, the value of a node is defined recursively as

follows. The value of leaf AND nodes is ”1” and the value

of leaf OR nodes is ”0”. Let C(n) denote the child nodes

and v(n) denotes the value of node n. If n is a AND node

then: v(n) = ∏n′∈C(n) v(n′) and if n is a OR node then

v(n) =
∑n′∈C(n)(#(n,n′)w(n,n′)v(n′))

∑n′∈C(n) #(n,n′)

The AND/OR sample mean is the value of the root node.

We can show that the value of an OR node is equal to an

unbiased estimate of the conditional expectation of the vari-

able at the OR node given an assignment from the root to

the parent of the OR node. Since all variables, except the

evidence variables are unassigned at the root node, the value

of the root node equals the AND/OR sample mean which is

an unbiased estimate of probability of evidence. Formally,

THEOREM 3.4. The AND/OR sample mean is an unbiased

estimate of probability of evidence.

Example 3.5. The calculations involved in computing the

sample mean on the AND/OR sample tree on our example
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Figure 3: Computation of Values of OR and AND nodes in

a AND/OR sample tree. The value of root node is equal to

the AND/OR sample mean

Bayesian network given in Figure 2 are shown in Figure

3. Each AND node and OR node in Figure 3 is marked

with a value that is computed recursively using definition

3.3. The value of OR nodes X and Y given Z = j ∈ {0,1}

is equal to ̂gX (Z = j) and ̂gY (Z = j) respectively defined

in Equation 9. The value of the root node is equal to the

AND/OR sample mean which is equal to the sample mean

computed by parts in Equation 10.

Algorithm 1 AND/OR Importance Sampling

Input: an ordering O = (X1, . . . ,Xn),a Bayesian network BN and
a proposal distribution Q
Output: Estimate of Probability of Evidence

1: Generate samples x1, . . . ,xN from Q along O.
2: Build a AND/OR sample tree SAOT for the samples x1, . . . ,xN

along the ordering O.
3: Initialize all labeling functions 〈w,#〉 on each arc from an Or-

node n to an And-node n′ using Definition 3.1.
4: FOR all leaf nodes i of SAOT do
5: IF And-node v(i)= 1 ELSE v(i)=0
6: For every node n from leaves to the root do
7: Let C(n) denote the child nodes of node n
8: IF n = 〈X ,x〉 is a AND node, then v(n) = ∏n′∈C(n) v(n′)
9: ELSE if n = X is a OR node then

v(n) =
∑n′∈C(n)(#(n,n′)w(n,n′)v(n′))

∑n′∈C(n) #(n,n′)
.

10: Return v(root node)

We now have the necessary definitions to formally present

the AND/OR importance sampling scheme (see Algorithm

1). In Steps 1-3, the algorithm generates samples from Q

and stores them on an AND/OR sample tree. The algo-

rithm then computes the AND/OR sample mean over the

AND/OR sample tree recursively from leaves to the root in

Steps 4− 9. We can show that the value v(n) of a node

in the AND/OR sample tree stores the sample average of

the subproblem rooted at n, subject to the current variable

instantiation along the path from the root to n. If n is the

root, then v(n) is the AND/OR sample mean which is our

AND/OR estimator of probability of evidence. Finally, we

summarize the complexity of computing AND/OR sample

mean in the following theorem:

THEOREM 3.6. Given N samples and n variables (with

constant domain size), the time complexity of computing

AND/OR sample mean is O(nN) (same as importance sam-

pling) and its space complexity is O(nN) (the space com-

plexity of importance sampling is constant).

4 Variance Reduction

In this section, we prove that the AND/OR sample mean

may have lower variance than the sample mean computed

using importance sampling (Equation 3).
THEOREM 4.1 (Variance Reduction). Variance of AND/OR

sample mean is less than or equal to the variance of impor-

tance sampling sample mean.

Proof. The details of the proof are quite complicated and

therefore we only provide the intuitions involved. As noted

earlier the guiding principle of AND/OR sample mean is to

take advantage of conditional independence in the graphi-

cal model. Let us assume that we have three random vari-

ables X, Y and Z with the following relationship: X and Y

are independent of each other given Z (similar to our exam-

ple Bayesian network). The expression for variance derived

here can be used in an induction step (induction is carried

on the nodes of the pseudo tree) to prove the theorem.

In this case, importance sampling generates samples

((x1,y1,z1), . . . ,(xN ,yN ,zN)) along the order 〈Z,X,Y〉 and

estimates the mean as follows:

µ IS(XYZ) =
∑N

i=1 xiyizi

N
(12)

Without loss of generality, let {z1,z2} be the domain of Z

and let these values be sampled N1 and N2 times respec-

tively. We can rewrite Equation 12 as follows:

µ IS(XYZ) =
1

N

2

∑
j=1

N jzj
∑N

i=1 xiyiI(z j,x
i,yi)

N j

(13)

where I(z j,x
i,yi) is an indicator function which is 1 iff the

partial assignment (z j,x
i,yi) is generated in any of the N

samples and 0 otherwise.

AND/OR sample mean is defined as:

µAO(XYZ) = 1
N

2

∑
j=1

N jz j

(
∑N

i=1 xiI(z j ,x
i)

N j

)(
∑N

i=1 yiI(z j ,y
i)

N j

)
(14)

where I(x j,zi) (and similarly I(y j,zi)) is an indicator func-

tion which equals 1 when one of the N samples contains the

tuple (x j,zi) (and similarly (y j,zi))) and is 0 otherwise.

By simple algebraic manipulations, we can prove that the

variance of estimator µ IS(XYZ) is given by:

Var(µ IS(XYZ)) =

(
2

∑
j=1

z2
j Q(zj)

(
µ(X|z j)

2V (Y|z j)+

µ(Y|z j)
2V (X|z j)+V (X|z j)V (Y|zj)

))
/N −µ2

XYZ/N (15)



Similarly, the variance of AND/OR sample mean is given
by:

Var(µAO(XYZ)) =

(
2

∑
j=1

z2
j Q(zj)

(
µ(X|z j)

2V (Y|z j)

+ µ(Y|z j)
2V (X|z j)+

V (X|z j)V (Y|zj)

N j

))
/N −µ2

XYZ/N (16)

where µ(X|z j) and V (X|z j) are the conditional mean and

variance respectively of X given Z = z j. Similarly, µ(Y|z j)
and V (Y|z j) are the conditional mean and variance respec-

tively of Y given Z = z j.

From Equations 15 and 16, if N j = 1 for all j, then we can

see that the Var(µAO(XYZ)) = Var(µ IS(XYZ)). However

if N j > 1, Var(µAO(XYZ)) <Var(µ IS(XYZ)). This proves

that the variance of AND/OR sample mean is less than or

equal to the variance of conventional sample mean on this

special case. As noted earlier using this case in induction

over the nodes of a general pseudo-tree completes the proof.

5 Estimation in AND/OR graphs

Next, we describe a more powerful algorithm for

estimating mean in AND/OR-space by moving from

AND/OR-trees to AND/OR graphs as presented in

[Dechter and Mateescu, 2007]. An AND/OR-tree may con-

tain nodes that root identical subtrees. When such unifiable

nodes are merged, the tree becomes a graph and its size

becomes smaller. Some unifiable nodes can be identified

using contexts defined below.

Definition 5.1 (Context). Given a belief network and the

corresponding AND/OR search tree SAOT relative to a

pseudo-tree T , the context of any AND node 〈Xi,xi〉 ∈ SAOT

, denoted by context(Xi), is defined as the set of ancestors

of Xi in T , that are connected to Xi and descendants of Xi.

The context minimal AND/OR graph is obtained by merg-

ing all the context unifiable AND nodes. The size of the

largest context is bounded by the tree width w∗ of the

pseudo-tree [Dechter and Mateescu, 2007]. Therefore, the

time and space complexity of a search algorithm traversing

the context-minimal AND/OR graph is O(exp(w∗)).
Example 5.2. For illustration, consider the context-

minimal graph in Figure 1(e) of the pseudo-tree from Fig-

ure 1(c). Its size is far smaller that that of the AND/OR tree

from Figure 2(c) (30 nodes vs. 38 nodes). The contexts of

the nodes can be read from the pseudo-tree in Figure 1(b)

as follows: context(A) = {A}, context(B) = {B,A}, con-

text(C) = {C,B,A}, context(D) = {D,C,B} and context(E) =

{E,A,B}.

The main idea in AND/OR-graph estimation is to store all

samples on an AND/OR-graph instead of an AND/OR-tree.

Similar to an AND/OR sample tree, we can define an iden-

tical notion of an AND/OR sample graph.

Definition 5.3 ( Arc labeled AND/OR sample graph).

Given a complete AND/OR graph φG and a set of samples S

, an AND/OR sample graph SAOG is obtained by removing

all nodes and arcs not in S from φG. The labels on SAOG are

set similar to that of an AND/OR sample tree (see Defini-

tion 3.1).

Example 5.4. The bold edges and nodes in Figure 1(c) de-

fine an AND/OR sample tree. The bold edges and nodes in

Figure 1(d) define an AND/OR sample graph correspond-

ing to the same samples that define the AND/OR sample

tree in Figure 1(c).

The algorithm for computing the sample mean on AND/OR

sample graphs is identical to the algorithm for AND/OR-

tree (Steps 4-10 of Algorithm 1). The main reason in mov-

ing from trees to graphs is that the variance of the sample

mean computed on an AND/OR sample graph can be even

smaller than that computed on an AND/OR sample tree.

More formally,

THEOREM 5.5. Let V (µAOG), V (µAOT ) and V (µIS) be the

variance of AND/OR sample mean on an AND/OR sample

graph, variance of AND/OR sample mean on an AND/OR

sample tree and variance of sample mean of importance

sampling respectively. Then given the same set of input

samples:

V (µAOG) ≤V (µAOT ) ≤V (µIS)

We omit the proof due to lack of space.

THEOREM 5.6 (Complexity of computing AND/OR graph

sample mean). Given a graphical model with n variables,

a psuedo-tree with treewidth w∗ and N samples, the time

complexity of AND/OR graph sampling is O(nNw∗) while

its space complexity is O(nN).

6 Experimental Evaluation

6.1 Competing Algorithms

The performance of importance sampling based algo-

rithms is highly dependent on the proposal distribution

[Cheng and Druzdzel, 2000]. It was shown that computing

the proposal distribution from the output of a Generalized

Belief Propagation scheme of Iterative Join Graph Propaga-

tion (IJGP) yields better empirical performance than other

available choices [Gogate and Dechter, 2005]. Therefore,

we use the output of IJGP to compute the proposal distri-

bution Q. The complexity of IJGP is time and space expo-

nential in its i-bound, a parameter that bounds cluster sizes.

We use a i-bound of 5 in all our experiments.

We experimented with three sampling algorithms for

benchmarks which do not have determinism: (a) (pure)

IJGP-sampling, (b) AND/OR-tree IJGP-sampling and (c)

AND/OR-graph IJGP-sampling. Note that the underlying

scheme for generating the samples is identical in all the



methods. What changes is the method of accumulating the

samples and deriving the estimates. On benchmarks which

have zero probabilities or determinism, we use the Sample-

Search scheme introduced by [Gogate and Dechter, 2007]

to overcome the rejection problem. We experiment with the

following versions of SampleSearch on deterministic net-

works: (a) pure SampleSearch, (b) AND/OR-tree Sample-

Search and (c) AND/OR-graph SampleSearch.

6.1.1 Results

We experimented with three sets of benchmark belief net-

works (a) Random networks, (b) Linkage networks and (c)

Grid networks. Note that only linkage and grid networks

have zero probabilities on which we use SampleSearch.The

exact P(e) for most instances is available from the UAI

2006 competition web-site.

Our results are presented in Figures 4-6. Each Figure shows

approximate probability of evidence as a function of time.

The bold line in each Figure indicates the exact probabil-

ity of evidence. The reader can visualize the error from

the distance between the approximate curves and the ex-

act line. For lack of space, we show only part of our re-

sults. Each Figure shows the number of variables n, the

maximum-domain size d and the number of evidence nodes

|E| for the respective benchmark.

Random Networks From Figures 4(a) and 4(b), we see

that AND/OR-graph sampling is better than AND/OR-tree

sampling which in turn is better than pure IJGP-sampling.

However there is not much difference in the error because

the proposal distribution seems to be a very good approxi-

mation of the posterior.

Grid Networks All Grid instances have 1444 binary nodes

and between 5-10 evidence nodes. From Figures 5(a) and

5(b), we can see that AND/OR-graph SampleSearch and

AND/OR-tree SampleSearch are substantially better than

pure SampleSearch.

Linkage Networks The linkage instances are gener-

ated by converting a Pedigree to a Bayesian network

[Fishelson and Geiger, 2003]. These networks have be-

tween 777-2315 nodes with a maximum domain size of

36. Note that it is hard to compute exact probability of ev-

idence in these networks [Fishelson and Geiger, 2003]. We

observe from Figures 6(a),(b) (c) and (d) that AND/OR-

graph SampleSearch is substantially more accurate than

AND/OR-tree SampleSearch which in turn is substantially

more accurate than pure SampleSearch. Notice the log-

scale in Figures 6 (a)-(d) which means that there is an or-

der of magnitude difference between the errors. Our results

suggest that AND/OR-graph and tree estimators yield far

better performance than conventional estimators especially

on problems in which the proposal distribution is a bad ap-

proximation of the posterior distribution.
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Figure 4: Random Networks

 5e-12

 1e-11

 1.5e-11

 2e-11

 2.5e-11

 3e-11

 100  200  300  400  500  600  700  800  900  1000

P(
e)

Time in Seconds 

 Grids BN-30: n=1156,d=2,|E|=120

SampleSearch
AND/OR-Graph-SampleSearch

AND/OR-Tree-SampleSearch
Exact

(a)

 3e-14

 3.5e-14

 4e-14

 4.5e-14

 5e-14

 5.5e-14

 6e-14

 6.5e-14

 7e-14

 7.5e-14

 100  200  300  400  500  600  700  800  900  1000

P(
e)

Time in Seconds 

 Grids BN-40 : n=1444,d=2,|E|=150 

SampleSearch
AND/OR-Graph-SampleSearch

AND/OR-Tree-SampleSearch
Exact

(b)
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7 Related Work and Summary

The work presented in this paper is related to the

work by [Hernndez and Moral, 1995, Kjærulff, 1995,

Dawid et al., 1994] who perform sampling based in-

ference on a junction tree. The main idea in these

papers is to perform message passing on a junction

tree by substituting messages which are too hard to

compute exactly by their sampling-based approx-
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Figure 6: Linkage Bayesian Networks

imations. [Kjærulff, 1995, Dawid et al., 1994] use

Gibbs sampling while [Hernndez and Moral, 1995] use

importance sampling to approximate the messages.

Similar to recent work on Rao-Blackwellised sam-

pling such as [Bidyuk and Dechter, 2003, Paskin, 2004,

Gogate and Dechter, 2005], variance reduction is achieved

in these junction tree based sampling schemes because of

some exact computations; as dictated by the Rao-Blackwell

theorem. AND/OR estimation, however, does not require

exact computations to achieve variance reduction. In

fact, variance reduction due to Rao-Blackwellisation is

orthogonal to the variance reduction achieved by AND/OR

estimation and therefore the two could be combined to

achieve more variance reduction. Also, unlike our work

which focuses on probability of evidence, the focus of

these aforementioned papers was on belief updating.

To summarize, the paper introduces a new sampling based

estimation technique called AND/OR importance sam-

pling. The main idea of our new scheme is to derive statis-

tics on the generated samples by using an AND/OR tree or

graph that takes advantage of the independencies present

in the graphical model. We proved that the sample mean

computed on an AND/OR tree or graph may have smaller

variance than the sample mean computed using the conven-

tional approach. Our experimental evaluation is prelimi-

nary but quite promising showing that on most instances

AND/OR sample mean has lower error than importance

sampling and sometimes by significant margins.
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