A Game-Theoretic Analysis of Updating Sets of Probabilities
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Suppose that an agent models her uncertainty about a d
main using asetP of probability distributions. How should
the agent make decisions? Perhaps the best-studied a|
most commonly-used approach in the literature is to use.:
the minimax criterion [Wald 1950; &denfors and Sahlin
1982; Gilboa and Schmeidler 1989]. According to the min-
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Abstract

We consider how an agent should update her un-
certainty when it is represented by a $etof
probability distributions and the agent observes
that a random variabl& takes on value;, given
that the agent makes decisions using thigi-
max criterion perhaps the best-studied and most
commonly-used criterion in the literature. We
adopt a game-theoretic framework, where the
agent plays against a bookie, who chooses some
distribution from?P. We consider two reason-
able games that differ in what the bookie knows
when he makes his choice. Anomalies that have
been observed before, likime inconsistengy
can be understood as arising because different
games are being played, against bookies with dif-
ferent information. We characterize the impor-
tant special cases in which the optimal decision
rules according to the minimax criterion amount
to either conditioning or simply ignoring the in-
formation. Finally, we consider the relationship
between conditioning andalibration when un-
certainty is described by sets of probabilities.

INTRODUCTION

imax criterion, actiona, is preferred to actior; if the

worst-case expected lossaf (with respect to all the prob-
ability distributions in the seéP under consideration) is bet-
ter than the worst-case expected losg0fThus, the action

chosen is the one with the best worst-case outcome.
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agent may make some observations, or learn some infor-
mation. This leads to an obvious question: If the agent rep-
resents her uncertainty using a g&bf probability distri-
butions, how should she upd&®ein light of observing that
random variableX takes on value:? Perhaps the standard
answer is to condition each distributionon X = =z
(more precisely, to condition those distributionsfinthat

give X = x positive probability onX = z), and adopt

the resulting set of conditional distributiof’s| X = z as

her representation of uncertainty. As has been pointed out
by several authors, this sometimes leads to a phenomenon
calleddilation [Augustin 2003; Cozman and Walley 2001;
Herron, Seidenfeld, and Wasserman 1997; Seidenfeld and
Wasserman 1993]: the agent may have substantial knowl-
edge about some other random variabldefore observ-

ing X = =z, but know significantly less after conditioning.
Walley [1991, p. 299] gives a simple example of dilation:
suppose that a fair coin is tossed twice, where the second
toss may depend in an arbitrary way on the first. (In par-
ticular, the tosses might be guaranteed to be identical, or
guaranteed to be different.) ¥ represents the outcome of
the first toss and” represents the outcome of the second
toss, then before observing, the agent believes that the
probability thatY” is heads id /2, while after observingy,

the agent believes that the probability thatis heads can

be an arbitrary element ¢d, 1].

While, as this example and others provided by Walley
show, such dilation can be quite reasonable, it inter-
Qcts rather badly with the minimax criterion, leading to
%]omalous behavior that has been caliimde inconsis-
cy[Grinwald and Halpern 2004; Seidenfeld 2004]: the
nimax-optimal conditional decision rule before the value
of X is observed (which has the form “X = 0 then do
ay; iIf X = 1then doas; ...") may be different from the
minimax decision rule obtained after conditioning. For ex-
ample, the minimax-optimal conditional decision rule may
say “If X = 0 then doa,”, but the minimax-optimal deci-
sion rule conditional on observing = 0 may beas. (See
Example 2.1.) If uncertainty is modeled using a single dis-

We are often interested in making decisions, not just in dribution, such time inconsistency cannot arise.
static situation, but in a more dynamic situation, where the



To understand this phenomenon better, we model the decstation. Every night the forecaster makes a prediction about
sion problem as a game between the agent and a bookie.Wthether or not it will rain the next day in the area where you
turns out that there is more than one possible game that cdive. She does this by asserting that the probability of rain
be considered, depending on what information the bookiés p, wherep € {0,0.1,...,0.9,1}. How should we inter-
has. We focus on two (closely related) games here. In theret these probabilities? The usual interpretation is that, in
first game, the bookie chooses a distribution frBrbefore  the long run, on those days at which the weather forecaster
the agent moves. We show that the Nash equilibrium of thigredict probabilityp, it will rain approximately100p% of
game leads to a minimax decision rule. (Indeed, this can bthe time [Dawid 1982]. Thus, for example, among all days
viewed as a justification of using the minimax criterion). for which she predicted.1, the fraction of days with rain
However, in this game, conditioning on the information is was close t@.1. A weather forecaster with this property is
not always optimat. In the second game, the bookie gets calledcalibrated

to choose the distributioafter the value ofX is observed. I .
A o Up to now, calibration has been considered only when un-
Again, in this game, the Nash equilibrium leads to the use

of minimax, but now conditionings the right thing to do. certf':unty 'S chgracterlzegl by a single dlstrlbutlon. We gen-
eralize the notion of calibration to our setting, where un-

If P is a singleton, the two games coincide (since there iertainty is characterized by a set of distributions. We then
only one choice the bookie can make, and the agent knowshow that a rule for updating a set of probabilities is guar-
what it is). Not surprisingly, conditioning is the appropri- anteed to be calibrated if and only if it is an instanc& of

ate thing to do in this case. The moral of this analysis isconditioning. In combination with our earlier results, this
that, when uncertainty is characterized by a set of distriimplies that if calibration is considered essential, then an
butions, if the agent is making decision using the minimaxupdate rule may sometimes result in decisions that are not
criterion, then the right decision depends on the game beinminimax optimal.

played. Th? agent must consider if she is trying to protecboth the idea of representing uncertainty by aRetf dis-
herself against an adversary who knows the valug ef = N ; o .
tributions and that of handling decisions in a worst-case

when choosing the distribution or one that does not know_ .. o )
optimal manner may, of course, be criticized. While we do
the value ofX = z.

not claim that this is necessarily the “right” or the “best”
In earlier work [Giinwald and Halpern 2004] (GH from approach, two of the most common criticisms are, to
now on), we essentially considered the first game, andome extent, unjustified. First, since it may be hard for
showed that, in this game, conditioning was not always thean agent to determine the precise boundaries of th® set
right thing to do when using the minimax criterion. In- it has been argued that “soft boundaries” are more appro-
deed, we showed there are sPtand games for which the priate. While this is sometimes the case, hard boundaries
minimax-optimal decision rule is to simply ignore the in- are natural in some cases, such as the Monty Hall problem
formation. Our analysis of the first game lets us go beyondExample 5.3). Similarly, the use of the minimax crite-
GH here in two ways. First, we characterize exactly when itrion is not as pessimistic as is often thought. The mini-
is minimax optimal to ignore information. Second, we pro- max solution often coincides with the Bayes-optimal solu-
vide a simple sufficient condition for when conditioning on tion under some “maximum entropy” prior [Gnwald and
the information is minimax optimal. Dawid 2004], which is hot commonly associated with be-

Ignoring the information can be viewed as the result of con"9 overly pessimistic. In fact, in the Monty Hall prob-

N . : X . lem, the minimax-optimal decision rule coincides with the
ditioning; not conditioning on the information, but condi- solution usually advocated. which requi King furth
o X .S y , quires making further
tioning on the whole space. This leads to a natural questlonassum tions abot® to reduce it to a singleton
suppose that when we obsemeve condition on the event P 9 '
that X € C(z), whereC(x) is some set containing, but
not necessarily equal tor}. Is this variant of condition- 2 NOTATION AND DEFINITIONS
ing, an approach we cafl-conditioning always minimax
optimal in the first game? That is, is it always optimal 10 prejiminaries: For ease of exposition, we assume
condition onsomething As we show by considering the 5oyt this paper that we are interested in two ran-
well-known Monty Hall Problem (Example 5.3), this is not 5, yariables X andY, which can take values in spaces
the case in general. NevertheleSs;onditioning has some X and, respectively. P always denotes a set of distri-
interesting properties: it is closely related to the concept OButions onX x Y; thatis,? C A(X x ), where, as

calibration [Dawid 1982]. Calibration is usually defined in usual,A(S) denotes the set of probability distributions on

terms of empirical data. To explain what it means, considely £ asse of exposition, we assume tRas a closed set;

an agent that is a weather forecaster on your local te|eVISIO['hiS is a standard assumption in the literature that seems
1In some other senses of the words “conditioning” and “opti- quite natural in our applications, and makes the statement

mal,” conditioning on the informatiois always optimal. Thisis Of our results simpler. IPr € A(X x V), let Pry and
discussed further in Section 6. Pry denote the marginals &fr on X and), respectively.



LetPy = {Pry : Pr € P}. If E C X x ), then let A decision ruled is a posteriori minimax optimaWwith
P|E={Pr| E:PreP,Pr(E) >0} HerePr | E  respect toP and A if, for all z € X such thatPr(X =
(denoted by some authors Bs(- | F)) is the distribution  z) > 0 for somePr € P,

|
onX x Y obtained by conditioning of.

maxp,cp|x =z Epr[Ls1] = Q)

Loss Functions: Asin GH, we are interested in an agent Mingep(x, 4)Maxprep| X =z Epe[Ls).

who must choose some action from a gdetwhere the loss
of the action depends only on the value of random variablero get the a posteriori minimax-optimal decision rule we

V. For ease of expositi(_)n_, we assume in this paper that!lo the obvious thing: ifc is observed, we simply condi-
X, Y, and A are always finite. We assume that with eaChtion each probability distributio®’r € P on X — z, and

actiona € A and valuey € ) is associated some 10SS 10 oy,qq0 the action that gives the least expected loss (in the
the agent. (The losses can be negative, which amounts t0,Aorst case) with respect 8 | X = z. Since all distri-

gain.) LetZ : ¥ x A — IR be the loss functiof. butionsPr mentioned in (1) satisfPr(X = z) = 1, the

Such loss functions arise quite naturally. For example, irminimum overs € D(&, A) does not depend on the val-
a medical setting, we can taBéto consist of the possible ues ofé(z') for 2’ 7 x; the minimum is effectively over
diseases and’ to consist of symptoms. The sdtconsists randomized actions rather than decision rules.

of possible courses of treatment that a doctor can choosgg ha following example, taken from GH, shows, a pri-
The doctor’s loss function depends only on the patient’s, minimax-optimal decision rules are in general different

disease and the course of treatment, not on the symptomgo . o posteriori minimax-optimal decision rules.
But, in general, the doctor’s choice of treatment depends

on the symptoms observed. Example 2.1: Suppose tha’ = Y = A = {0,1} and
P = {Pr e A(X xY) : Pry(Y = 1) = 2/3}. Thus,

Decision Rule§: Suppose that the agentlobserves th% consists of all distributions whose marginal Bhgives
value of a variableX that takes on values . After - _ 4 probability 2/3. We can think of the actions in

havmg o.bse.rvng, she must. perform an act', the qual- A as predictions of the value &f. The loss function is

ity of which is judged according to loss functidn The g it the right value is predicted and 1 otherwise; that is,
agent must choqsedemsmn rulahat_ determines what she_ L(i,§) = |i — j|. This is the so-called,1 or classification
does as a function of her observations. We allow decisiof,qs” 1t js easy to see that the optimal a priori decision rule is
rules to be randomized. Thus, a decision rule is a funCy, cnoose 1 no matter what is observed (which has expected
t!on d 1 X — A(A) that ?hooses a ,d'St”bUt'on OVer ac- |pss 1/3). Intuitively, observing the value oK tells us
tions based on the agent's observations. De&', A) be  qihing about the value 6f, so the best decision is to pre-
the set of all decision rules. A special case is a determlms(-jict according to the prior probability &f — 1. However,

tic Qecision_rule, whic.h.agsigns probapility ltoa particu_lara" probabilities ony’ — 1 are compatible with observing
action. If§ is deterministic, we sometimes abuse notationgjiher x — 0 or X = 1. That is, both(P | X = 0)y

and writed(z) for the action that is assigned probability and(P | X = 1)
1 by the distributionj(z). Given a decision rulé and a
loss functionL, let Ls be the random variable ot x )
such thatls(z,y) = >_,c 4 0(x)(a)L(y,a). Hered(z)(a)
stands for the probability of performing actioraccording ~ Thus, if you make decisions according to the minimax rule,
to the distributions(z) over actions that is adopted when then before making an observation, you will predict= 1.

is observed. Note that in the special case thista deter- However,no matter what observation you maketer mak-
ministic decision ruleLs(z,y) = L(y, d(x)). ing the observation, you will randomize (with equal prob-

ability) between predicting” = 0 andY = 1. Moreover,

. you know even before making the observation that your
toP andA if opinion as to the best decision rule will change in this way.
|

y consist of all distributions oy. Thus,
the minimax optimal a posteriori decision rule randomizes
(with equal probability) betweelW = 0 andY = 1.

A decision rules® is a priori minimax optimalwith respect

maXprEprpr [L50] = mingeD(X)A)maXPrEprpr [L(;]

That is,8° is a priori minimax optimal ifs° gives the best

worst-case expected loss with respect to all the distributiong’ TWO GAME-THEORETIC

in Pr. We can write max here instead of sup because of our INTERPRETATIONS OF P

assumption thaP is closed. This ensures that there is some

Pr € P for which Ep, [Lso] takes on its maximum value.  What does it mean that an agent’s uncertainty is character-
2\We could equally well use utilities, which can be viewed as ized by a sefP of probability distributions? How should

a positive measure of gain. Losses seem to be somewhat molé€ understand? We giveP a game-theoretic interpreta-
standard in this literature. tion here: namely, an adversary gets to choose a distribu-



tion from the sefP.® But this does not completely specify Theorem 3.1 Fix X, ), A, L, andP C A(X x ).

the game. We must also speciffhenthe adversary makes

the choice. We consider two times that the adversary cana) TheP-game has a Nash equilibriugar*, §*), where
choose: the first is before the agents observes the value of  7* s a distribution overP with finite support.

X, and the second is after. We formalize this as two differ-

ent games, where we take the “adversary” to be a bookie. (0) If (7*,6*) is a Nash equilibrium of th&-game such
. . i that7* has finite support, then
We call the first game thE-game. It is defined as follows:
(i) for every distributionPr’ € P in the support of

1. The bookie chooses a distributim € P. 7", we haveEp,[L;-] = maxprep Ep:[Ls-;
2. The valuer of X is chosen (by nature) according to (i) if Pr* = 3 5 cp e (pryso 7 (Pr) Pr (e, Pr*
Prx and observed by both bookie and agent. is the convex combination of the distributions in
3. The agent chooses an actiog A. the support ofr*, weighted by their probability
4. The valugy of Y is chosen according ®r | X = . according tor™), then
5. The agent’s loss id.(y,a); the bookie’s loss is Ep+[Ls+] = mingepx,a)Epee[Lo]
—L(y,a). = maxprep Milsep(x,4)Epr[Ls]
This is a zero-sum game; the agent’s loss is the bookie's = minsep(x, 4)maxprep Lpr[Ls]

gain. In this game, the agent’s strategy is a decision rule, = maxprep Epr[Ls-].

that is, a function that gives a distribution over actions for

each observed value of. The bookie's strategy is a dis- ONce nature has chosen a value forin the P-X-game,
tribution over distributions irP. we can regard steps 2-5 of tiie X-game as a game be-

tween the bookie and the agent, where the bookie’s strat-
We now consider a second interpretationyf character- egy is characterized by a distributionh| X = z and the
ized by a different game that gives the bookie more powerggent's is characterized by a distribution over actions. We
Rather than choosing the distribution before observing the || this theP-z-game.
value of X, the bookie gets to choose the distribution after

observing the value. We call this thie X -game. Theorem 3.2 Fix X, Y, A, L, P C A(X x )).

1. The valuer of X is chosen (by nature) in such away (a) The P-z-game has a Nash equilibriurfr*, 6*(z)),
thatPr(X = x) > 0 for somePr € P, and observed wherer* is a distribution overP | X = z with finite
by both the bookie and the agent. support.

2. The bookie chooses a distributid < P such that
Pr(X =z) > 04 (b) If (7*,6%(x)) is a_Nash equilibrium of th@-z-game

3. The agent chooses an actior A. such thatr* has finite support, then

4. The valugy of Y is chosen according r | X = . (i) for all Pr' in the support ofr*, we have

5. The agent’s loss id.(y,a); the bookie's loss is Epy/[Ls-| = maxprep| x—o Epr[Ls+];

—L(y, a). (i) if Pr* = p,cp pe(pryso 7 (Pr) Pr, then
Recall that a pair of strategi€s, S>) is a Nash equilib-
rium if neither party can do better by unilaterally changing Ep.«[Ls<] = minsepx,a)Epr-[Ls]

strategies. If, as in our casgS,, S») is a Nash equilib- MaXpyep| X = Milsep(x, 4) Epr[Ls]
rium in a zero-sum game, it is also known as a “saddle Mingep(x, 4)MaXprep|x =z Epr[Ls]
point”; S; must be a minimax strategy, arf} must be = Maxprep|x—zEp:[Ls+].

a maximin strategy [@mwald and Dawid 2004]. As the

following results show, an agent must be using an a priSince all  distributions Pr in the expression
ori minimax-optimal decision rule in a Nash equilibrium of minsep(x,4ymaxprcp|x—. Ep:[Ls] in part (b)(ii) are
the P-game, and an a posteriori minimax-optimal decisionin P | X = z, as in (1), the minimum is effectively over
rule is a Nash equilibrium of th®-X-game. This can be randomized actions rather than decision rules.

viewed as a justification for using (a priori and aposteriori)-l-he proof of Theorems 3.1 and 3.2, as well as all other

minimax-optimal decision rules. missing proofs, can be found in the full paper {@wald
3This interpretation remains meaningful in several practicaland Halpern 2007]. These theorems can be viewed as say-
situations where there is no explicit adversary; see the final pargng that there is no time inconsistency; rather, we must just

graph of this section. . .
“If we were to consider conditional probability measures, for .be careful about what game is being played. Ifhgame

which Pr(Y = y | X — z) is defined even iPr(X — ) — is being played, the right strategy is the a priori minimax-
0, then we could drop the restriction thatis chosen such that Optimal strategy, both before and after the valueXofs
Pr(X = z) > 0 for somePr € P. observed; similarly, if théP-X-game is being played, the



right strategy is the a posteriori minimax-optimal strategy,whose conditional on observin§ = z is the conditional
both before and after the value &f is observed. Indeed, of some distribution irP, for all z € X. ClearlyP C (P),
thinking in terms of the games explains the apparent timéut the converse is not necessarily true. When it is true,
inconsistency. While it is true that the agent gains more in-conditioning is optimal.

formation by observing{ = z, in theP-X game, so does

the bookie. This information may be of more use to theProposition 4.2: If P = (P), then there exists an a priori
bookie than the agent, so, in this game, the agent can b®inimax-optimal rule that is also a posteriori minimax op-

worse off by being given the opportunity to learn the valuetimal. If, for all Pr € P and allz € X, Pr(X = ) > 0,
of X. then every a priori minimax-optimal rule is also a posteri-

. . L ori minimax optimal.
Of course, in most practical situations, agents (robots,

statisticians,...) are not really confronted with a bookieas we saw in Example 2.1, the minimax-optimal a pri-
who tries to make them suffer. Rather, the agents may haveri decision rule is not always the same as the minimax-
no idea at all what distribution hOIdS, except that it is in 0pt|ma| a posteriori decision rule. In fact, the minimax-

some sefP. Because all they know i®, they decide to  optimal a priori decision rule ignores the information ob-
prepare themselves for the worst-case and play the minserved. Formally, a rulé ignores informatiorif §(z) =
max strategy. The fact that such a minimax strategy ca(;/) for all z, 2’ € X. If § ignores information, defin&;

be interpreted in terms of a Nash equilibrium of a gametg pe the random variable gasuch thatls(y) = Ls(z,y)
helps to understand differences between different forms ofor some choice of. This is well defined, sincés (z,y) =
minimax (such as a priori and a posteriori minimax). FromLé(I/, y) forallz,z’ € X.

this point of view, it seems strange to have a bookie choose

between different distributions iR according to some dis- Theorem 4.3: Fix X, ), L, A, andP C A(X x )).
tribution 7*. However, if P is convex, we can replace the If, for all Pry € Py, P contains a distributiorPr’ such
distribution7* on P by a single distribution ir?, which  that X and Y are independent undelPr’, and Pr), =
consists of the convex combination of the distributions inPry,, then there is an a priori minimax-optimal decision
the support ofr*; this is just the distributio®r™ of The-  rule that ignores information. Under these conditions, if
orems 3.1 and 3.2. Thus, Theorems 3.1 and 3.2 hold with is an a priori minimax-optimal decision rule that ig-

the bookie restricted to a deterministic strategy. nores information, therd essentially optimizes with re-
spect to the marginal ol’; that is, maxp,cp Ep:[Ls] =
4 CHARACTERIZING A PRIORI maxpry epy Epry[Lj]-

MINIMAX DECISION RULES GH focused on the case th@&, is a singleton (i.e., the

Co . i marginal probability ort” is the same for all distributions
To get the a posteriori minimax-optimal decision rule we. o .
. S ; . inP)and for allz, Py C (P | X = x)y. Itisimmedi-
do the obvious thing: ifc is observed, we simply condi- . Lo Co .
. S ate from Theorem 4.3 that ignoring information is a priori
tion each probability distributiof’r € P on X = z, and . ; Lo
minimax optimal in this case.

choose the action that gives the least expected loss (in the

worst case) with respect® | X = x.
. o . . 5 C-CONDITIONING & CALIBRATION
We might expect that the a priori minimax-optimal deci-

sion rule should do the same thing. That is, it should be T .
. o Conditioning is the most common way of updating uncer-
the decision rule that says,aifis observed, then we choose |- : ; . ) .
tﬁlunty. In this section, we examine updating by condition-

the action that again gives the best result (in the worst case . L : :
with respect tP | X — z. However, as shown in GH, this ing. The following definition makes precise the idea that a

Lo . . decision rule is based on conditioning.
intuition is incorrect in general. There are times, for exam-

ple, that the best thing to do is to ignore the observed Valu%efinition 5.1: A probability update ruleis a function
of X, and just choose the action that gives the least EXT . 9A(XXY) ¥ _y 9A(XXY) mapping a seP of dis-
pected loss (in the wors_t case_) with re.sped.Ptcno ma?“?r tributions and an observatianto a sefl1(P, x) of distribu-
what valueX has. In this section we first give a sufficient tions; intuitively, TI(P, ) is the result of updating® with
condition for conditioning to be optimal, and then charac-the 01bservation:, 1 ’

terize when ignoring the observed value is optimal. )

Definition 4.1: Let (P) = {Pr € A(X x Y) : D?finitio_n 5.2: LetC = {Xl,...,).(k} be a partition (.)f
Pry € PXand(Pl" | X = iC) e (fP | X = LC) X thatlS,Xi # 0 for i = 17...,]9, XiU...A = X;

forall 2 € X such thatP | X = z is nonempty. i and; N &; = Ofori # j. If v € &, letC(x) be the
cell containingz; i.e., the unique element; € C such

Thus, (P) consists of all distribution®r whose marginal thatxz € X;. TheC-conditioningprobability update rule
on X is the marginal on¥ of some distribution i and is the functionII defined by takindI(P,z) = P | X €



C(x). A decision ruled is based onC-conditioningif it choosing each of the two remaining doors with probabil-
amounts to first updating the sPtto P | X € C(z), and ity 1/2. Neither strategy (a) nor (b) is minimax optimal.
then taking the minimax-optimal distribution over actions Thus, the a priori minimax decision rule in tiiegame is
relative to? | X € C(z). Formally, ¢ is based orC-  not always based af+conditioning.il

conditioning if, for allz € X with Pr(X = x) > 0 for

somePr € P, While the example shows th&-conditioning is not al-
ways optimal in the minimax sense, it can be justified by
max  FEp.[Ls] = min max  FEp.[Ls]. other means; as we now sho@conditioning is closely
Prep|Xec(z) IE€D(X,A) PreP|X eC(z) related tocalibration. Indeed, a probability update rule
I is calibrated if and only if for eactP, it amounts toC-

conditioning for some partitiod@ of X'.  Calibration is

All examples of a priori minimax decision rules that we usually defined in terms of empirical data. To explain
have seen so far are based @monditioning: Standard What it means, consider a weather forecaster, who pre-
conditioning is based od-conditioning, where we take dicts the probability of rain every day. How should we
C to consist of all singletons; ignoring information is also interpret the probabilities that she announces? The usual
based orc-conditioning, where& = {X’}. This suggests !r_lterpretatlon—\{vhlch_ comcples with most people’s intu-
that, perhaps, the a priori minimax decision rule must alsdtivé understanding—is that, in the long run, on those days
be based od-conditioning. The following well-known ex- &t which the weather forecaster predict probabyhitit will
ample shows that this conjecture is false. rain approximatelyt 00p% of the time [Dawid 1982]. Thus,

for example, among all days for which she predicfied
Example 5.3: [The Monty Hall Problem] [Mosteller  the fraction of days with rain was close ol (given the
1965; vos Savant 1990]: Suppose that you're on a gamweather forecaster’s precision, we should require it to be
show and given a choice of three doors. Behind one is &#etween, say).05 and0.15). A weather forecaster with
car; behind the others are goats. You pick door 1. Befordhis property is said to bealibrated If a weather forecaster
opening door 1, Monty Hall, the host (who knows what is is calibrated, and you make bets based on her probabilistic
behind each door) opens one of the other two doors, saypredictions (which are all accepted), then in the long run
door 3, which has a goat. He then asks you if you still wantyou will not lose money.
to_take what's behind door_l, or to take what's behind d(.)o_rlf a weather forecaster is not calibrated, there exist bets
2 instead. Should you switch? You may assume that ini
tially, the car was equally likely to be behind each of the
doors.

which seem favorable but which result in a loss. Note that
calibration is aminimalrequirement: a weather forecaster
who predicts0.3 for every single day of the year may be
We formalize this well-known problem as7a-game, as calibrated if it indeed rains on 30% of the days, but still
follows: Y = {1, 2, 3} represents the door which the car is not very informative. Thus, given two calibrated forecast-
behind. X = {G2,G3}, where, forj € {2,3}, G; corre-  ers, we prefer the one that makes “sharper” predictions, in
sponds to the quizmaster showing that there is a goat behirgisense to be defined below.

dhooaj. A= {]},’ 2’”3}’ \r/]vhere acfttiomMe A c;])rrespondz tg In our case, we do not test probabilistic predictions with re-
t2 € gor_%oul ina fy choose, after on'Fy r?s olpen_ef\_ pogpect to empirical relative frequencies, but with respect to

ors. 1heloss .unc-tlon IS once again the classi IC"_monothersets of “potentially underlying” probability measures.
loss, L(i, j) = 1if i # J» thatis, if you choose a door with  \y 416 1ot the first to do this: see, for example, [Vovk,
ahgoat begmd It, ?\nd(ld? :ho If 4 ? fl’dt,hat,t')s’ FYOU  Gammerman, and Shafer 2005]. The definition of calibra-
¢ 0/338 adoor W.'t acaR Is the set of all distributionBr tion extends naturally to this situation. To see how, we first
ond’ x Y satisfying define calibration with respect to a single underlying prob-

Pry(Y =1) = Pry(Y = 2) = Pry(¥ = 3) = L ability measure. LeP = {Pr} for a single c_zl@t_nbutmrPr
Pr(Y = 2 _ _ _ _ _ and letlIlI be a probability update rule (Definition 5.1) such
(Y =2|X=G)=Pr(Y=3| X =G3)=0. -7 . —
thatTI({Pr}, z) contains just a single distribution for each

It is well known, and easy to show, that the minimax- 2 € & (for example,IT could be ordinary conditioning).
optimal strategy is always to switch doors, no matterWe define
whether Monty opens door 2 or door 3. Since the game is _ o
an instance of th@-game, this means that the decision rule R={R:R=(Il(P,z))yforsomez € X}. (2)
60* given byd*(Go) = 3; 6*(G3) = 2is an a priori mini- R is just the range ofI, restricted to distributions oY,

g y ; p J g
max rule. Clearlyg* is notbased or€-conditioning: there the random variable that we are interested in predicting;
exist only two partitions oft’. The corresponding two up- its elements are the distributions dhthat Pr is mapped
date rules based a@ficonditioning amount to, respectively, to, upon observing different values af Note thatR
a) ignoring X and choosing each door with probability is defined relative to a probability update rdleand a
(@i ing X and choosi hd ith bability is defined relative t babilit date rdle and
1/3, or (b) conditioning orX in the standard way and thus setP of distributions. By our assumptions ¢» and I,



R ={{R1},{R2},...} is asetof singleton sets, each con- Note that in a generalized conditioning rule, we condition
taining one distribution o). For{R} € R, let Xz bethe on a partition ofX’, but the partition may depend on the

set ofz € X that mapPr to R, i.e. setP. For example, for som®, the rule may ignore the
value ofz, whereas for otheP, it may amount to ordinary
Xp={zeX : (II({Pr},z) )y = {R}}. conditioning. It easily follows from Proposition 4.2 that

every generalized conditioning rule is calibrated. The next
result shows that eveisharplycalibrated update rule must
be a generalized conditioning rule.

Note that the set&Xr } partitionX'. I1 is calibrated relative
to P if for all R with {R} € R, (Pr | X € Xg)y = R.

Thus, conditioned on the event that the agent predicts
using distributionR, the distribution ofY” must indeed be

equal toR. Theorem 5.8: There exists an update rule that is sharply

calibrated. Moreover, every sharply calibrated update rule
It is straightforward to generalize this notion to sg&tof  is a generalized conditioning update rule.

probability distributions that are not singletons, and update

ruleslI that map to sets of probabilities. Definition (2) re- Theorem 5.8 says that an agent who wants to be sharply
mains unchanged. F@& <€ R, we now takeYr to be the calibrated should update her probabilities using condition-
set ofx € X' that mapP to R, that is, ing (although what she conditions on may depend on the
set of probabilities that she considers possible).

Xr={zeX : (I(P,x))y =R} ®) _ . _ .
Given the game-theoretic interpretation of Section 3, we
Once again, the sefstz } partition X’ might wonder if there is a variant of the games considered
earlier for which the equilibrium involves generalized con-
Definition 5.4: 1II is calibrated relative toP if for all ditioning. As we show in the full paper, there is (although
Pre PandR € R, Pry(- | X € Az) € R. the game is perhaps not as natural as the ones considered in
1T is calibratedif it is calibrated relative to all sets of dis- Section 3). Roughly speaking, we consider a three-player
tributions? C A(X x V). 1 game, with a bookie and two agents. The bookie again

- N chooses a probability distribution from a getthe bookie
Proposition 5.5: For all partitions C of X and all P, C- 350 chooses the loss function from some set. The first
conditioning is calibrated relative t@. agent observe® andz and update$® to P,. The sec-

i i i i i ond agent learn®,, andb (but not? andx) and makes the
Calibration as defined here is a very weak notion. For ex'minimax—optimal decision. As we show, in Nash equilib-
ample, the'upcjate UE(P,z) = A(X x ) .tha't mMaps  riym, the first agent’s updated set of probabiliti®s, must
each combination of andP to the set of all distributions )., 114 result of-conditioning, where, as in Theorem 5.8,
on X x Y is calibrated under our definition. This update ¢ may depend ofP.
rule loses whatever information may have been contained
in P, and is therefore not very useful. Intuitively, the fewer
distributions that there are iR, the more informatior® 6 DISCUSSION
contains. Thus, we restrict ourselves to setthat are as

small as possible, while still being calibrated. We have examined how to update uncertainty represented
. R by a set of probability distributions, where we motivate up-
Definition 5.6: Update rulell" is wider than/ update rule  gating rules in terms of the minimax criterion. Our key
I relative toP if, for all = € &, TI(P, x) € I'(P, x). innovation has been to show how different approaches can
IT" is strictly widerrelative to if the inclusion is strict for e ynderstood in terms of a game between a bookie and
some somer. ITis (strictly) narrowerthanlIl’, relative to 5 agent, where the bookie picks a distribution from the
Pif 11" is (strictly) wider tharlT relative toP. Tlissharply  set and the agent chooses an action after making an obser-
calibratedrelative toP if IT is calibrated relative t® and  \5tion. Different approaches to updating arise depending
there is no update_z ruld’ that i_s calibrated gnd strictly nar- - on whether the bookie’s choice is made before or after the
rower thanll relative toP. Il is sharply calibratedf Tlis  opservation. We believe that this game-theoretic approach
sharply calibrated relative to at C A(X x ). 11 should prove useful more generally in understanding differ-

ent approaches to updating. We hope to explore this further
We now want to prove that every sharply calibrated updatem futSfe work P g P P

rule must involve conditioning. To make this precise, we
need the following definition. We end this paper by giving an overview of the senses in

which conditioning is optimal and the senses in which it is
Definition 5.7: II is ageneralized conditioning update rule not, when uncertainty is represented by a set of distribu-
if, for all P C A(X x )), there exists a partitiof (that  tions. We have established that conditioning the fullBet
may depend ofP) such that for all: € X, II(P,z) = P | on X = x is minimax optimal in theP-z-game, but not
C(z). 1 in the P-game. The minimax-optimal decision rule in the



‘P-game is often an instance 6fconditioning, a general- I1TR-0325453 and 11S-0534064, and by AFOSR under
ization of conditioning. The Monty Hall problem showed, grant FA9550-05-1-0055.

however, that this is not always the case. On the other hand,

if instead of the minimax criterion, we insist that update Raferences

rules are calibrated, th&hconditioning is always the right
thing to do after all.

There are two more senses in which conditioning is the
right thing to do. First, Walley [1991] shows that, in a
sense, conditioning is the only updating rule thatds
herent according to his notion of coherence. He justifies
coherence decision theoretically, but not by using the min-
imax criterion. Note that the minimax criterion puts a total
order on decision rules. That is, we can say thiatat least

as good ag’ if

maxprep Epr[Ls] < maxprep Epr[Ls].

By way of contrast, Walley [1991] puts a partial order on
decision rules by taking to be at least as good asif

maXpre'pEpr[L(; — L(sl} <0.

Since both maXprepEPr[L(; — L5/] and
maxpcp Ep,[Lss — Ls| may be positive, this is indeed
a partial order. If we use this ordering to determine the
optimal decision rule then, as Walley shows, conditioning
is the only right thing to do.

Second, in this paper, we interpreted “conditioning” as con-
ditioning the full given set of distribution®. Then condi-
tioning is not always an a priori minimax optimal strategy
on the observatiodY = x. Alternatively, we could first
somehow select singlePr € P, conditionPr on the ob-
servedX = z, and then take the optimal action relative
to Pr | X = z. It follows from Theorem 3.1 that the
minimax-optimal decision rulé* in a P-game can be un-
derstood this way. It defines the optimal response to the dis-
tribution Pr* € A(X x ) defined in Theorem 3.1(b)(ii).

If P is convex, thePr* € P. In this sense, the minimax-
optimal decision rule can always be viewed as an instance
of “conditioning,” but on a single speci@r* that depends

on the loss functiord rather than on the full sé®.

It is worth noting that Grove and Halpern [1998] give an
axiomatic characterization of conditioning sets of probabil-
ities, based on axioms given by van Fraassen [1987, 1985]
that characterizing conditioning in the case that uncertainty
is characterized by a single probability measure. As Grove
and Halpern point out, their axioms are not as compelling
as those of van Fraassen. It would be interesting to know
whether a similar axiomatization can be used to character-
ize the update notions that we have considered here.
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