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Abstract

We consider how an agent should update her un-
certainty when it is represented by a setP of
probability distributions and the agent observes
that a random variableX takes on valuex, given
that the agent makes decisions using themini-
max criterion, perhaps the best-studied and most
commonly-used criterion in the literature. We
adopt a game-theoretic framework, where the
agent plays against a bookie, who chooses some
distribution fromP. We consider two reason-
able games that differ in what the bookie knows
when he makes his choice. Anomalies that have
been observed before, liketime inconsistency,
can be understood as arising because different
games are being played, against bookies with dif-
ferent information. We characterize the impor-
tant special cases in which the optimal decision
rules according to the minimax criterion amount
to either conditioning or simply ignoring the in-
formation. Finally, we consider the relationship
between conditioning andcalibration when un-
certainty is described by sets of probabilities.

1 INTRODUCTION

Suppose that an agent models her uncertainty about a do-
main using asetP of probability distributions. How should
the agent make decisions? Perhaps the best-studied and
most commonly-used approach in the literature is to use
the minimax criterion [Wald 1950; G̈ardenfors and Sahlin
1982; Gilboa and Schmeidler 1989]. According to the min-
imax criterion, actiona1 is preferred to actiona2 if the
worst-case expected loss ofa1 (with respect to all the prob-
ability distributions in the setP under consideration) is bet-
ter than the worst-case expected loss ofa2. Thus, the action
chosen is the one with the best worst-case outcome.

We are often interested in making decisions, not just in a
static situation, but in a more dynamic situation, where the

agent may make some observations, or learn some infor-
mation. This leads to an obvious question: If the agent rep-
resents her uncertainty using a setP of probability distri-
butions, how should she updateP in light of observing that
random variableX takes on valuex? Perhaps the standard
answer is to condition each distribution inP on X = x
(more precisely, to condition those distributions inP that
give X = x positive probability onX = x), and adopt
the resulting set of conditional distributionsP | X = x as
her representation of uncertainty. As has been pointed out
by several authors, this sometimes leads to a phenomenon
calleddilation [Augustin 2003; Cozman and Walley 2001;
Herron, Seidenfeld, and Wasserman 1997; Seidenfeld and
Wasserman 1993]: the agent may have substantial knowl-
edge about some other random variableY before observ-
ing X = x, but know significantly less after conditioning.
Walley [1991, p. 299] gives a simple example of dilation:
suppose that a fair coin is tossed twice, where the second
toss may depend in an arbitrary way on the first. (In par-
ticular, the tosses might be guaranteed to be identical, or
guaranteed to be different.) IfX represents the outcome of
the first toss andY represents the outcome of the second
toss, then before observingX, the agent believes that the
probability thatY is heads is1/2, while after observingX,
the agent believes that the probability thatY is heads can
be an arbitrary element of[0, 1].

While, as this example and others provided by Walley
show, such dilation can be quite reasonable, it inter-
acts rather badly with the minimax criterion, leading to
anomalous behavior that has been calledtime inconsis-
tency[Grünwald and Halpern 2004; Seidenfeld 2004]: the
minimax-optimal conditional decision rule before the value
of X is observed (which has the form “IfX = 0 then do
a1; if X = 1 then doa2; . . . ”) may be different from the
minimax decision rule obtained after conditioning. For ex-
ample, the minimax-optimal conditional decision rule may
say “If X = 0 then doa1”, but the minimax-optimal deci-
sion rule conditional on observingX = 0 may bea2. (See
Example 2.1.) If uncertainty is modeled using a single dis-
tribution, such time inconsistency cannot arise.



To understand this phenomenon better, we model the deci-
sion problem as a game between the agent and a bookie. It
turns out that there is more than one possible game that can
be considered, depending on what information the bookie
has. We focus on two (closely related) games here. In the
first game, the bookie chooses a distribution fromP before
the agent moves. We show that the Nash equilibrium of this
game leads to a minimax decision rule. (Indeed, this can be
viewed as a justification of using the minimax criterion).
However, in this game, conditioning on the information is
not always optimal.1 In the second game, the bookie gets
to choose the distributionafter the value ofX is observed.
Again, in this game, the Nash equilibrium leads to the use
of minimax, but now conditioningis the right thing to do.

If P is a singleton, the two games coincide (since there is
only one choice the bookie can make, and the agent knows
what it is). Not surprisingly, conditioning is the appropri-
ate thing to do in this case. The moral of this analysis is
that, when uncertainty is characterized by a set of distri-
butions, if the agent is making decision using the minimax
criterion, then the right decision depends on the game being
played. The agent must consider if she is trying to protect
herself against an adversary who knows the value ofX = x
when choosing the distribution or one that does not know
the value ofX = x.

In earlier work [Gr̈unwald and Halpern 2004] (GH from
now on), we essentially considered the first game, and
showed that, in this game, conditioning was not always the
right thing to do when using the minimax criterion. In-
deed, we showed there are setsP and games for which the
minimax-optimal decision rule is to simply ignore the in-
formation. Our analysis of the first game lets us go beyond
GH here in two ways. First, we characterize exactly when it
is minimax optimal to ignore information. Second, we pro-
vide a simple sufficient condition for when conditioning on
the information is minimax optimal.

Ignoring the information can be viewed as the result of con-
ditioning; not conditioning on the information, but condi-
tioning on the whole space. This leads to a natural question:
suppose that when we observex, we condition on the event
thatX ∈ C(x), whereC(x) is some set containingx, but
not necessarily equal to{x}. Is this variant of condition-
ing, an approach we callC-conditioning, always minimax
optimal in the first game? That is, is it always optimal to
condition onsomething? As we show by considering the
well-known Monty Hall Problem (Example 5.3), this is not
the case in general. Nevertheless,C-conditioning has some
interesting properties: it is closely related to the concept of
calibration [Dawid 1982]. Calibration is usually defined in
terms of empirical data. To explain what it means, consider
an agent that is a weather forecaster on your local television

1In some other senses of the words “conditioning” and “opti-
mal,” conditioning on the informationis always optimal. This is
discussed further in Section 6.

station. Every night the forecaster makes a prediction about
whether or not it will rain the next day in the area where you
live. She does this by asserting that the probability of rain
is p, wherep ∈ {0, 0.1, . . . , 0.9, 1}. How should we inter-
pret these probabilities? The usual interpretation is that, in
the long run, on those days at which the weather forecaster
predict probabilityp, it will rain approximately100p% of
the time [Dawid 1982]. Thus, for example, among all days
for which she predicted0.1, the fraction of days with rain
was close to0.1. A weather forecaster with this property is
calledcalibrated.

Up to now, calibration has been considered only when un-
certainty is characterized by a single distribution. We gen-
eralize the notion of calibration to our setting, where un-
certainty is characterized by a set of distributions. We then
show that a rule for updating a set of probabilities is guar-
anteed to be calibrated if and only if it is an instance ofC-
conditioning. In combination with our earlier results, this
implies that if calibration is considered essential, then an
update rule may sometimes result in decisions that are not
minimax optimal.

Both the idea of representing uncertainty by a setP of dis-
tributions and that of handling decisions in a worst-case
optimal manner may, of course, be criticized. While we do
not claim that this is necessarily the “right” or the “best”
approach, two of the most common criticisms are, to
some extent, unjustified. First, since it may be hard for
an agent to determine the precise boundaries of the setP,
it has been argued that “soft boundaries” are more appro-
priate. While this is sometimes the case, hard boundaries
are natural in some cases, such as the Monty Hall problem
(Example 5.3). Similarly, the use of the minimax crite-
rion is not as pessimistic as is often thought. The mini-
max solution often coincides with the Bayes-optimal solu-
tion under some “maximum entropy” prior [Grünwald and
Dawid 2004], which is not commonly associated with be-
ing overly pessimistic. In fact, in the Monty Hall prob-
lem, the minimax-optimal decision rule coincides with the
solution usually advocated, which requires making further
assumptions aboutP to reduce it to a singleton.

2 NOTATION AND DEFINITIONS

Preliminaries: For ease of exposition, we assume
throughout this paper that we are interested in two ran-
dom variables,X andY , which can take values in spaces
X andY, respectively.P always denotes a set of distri-
butions onX × Y; that is,P ⊆ ∆(X × Y), where, as
usual,∆(S) denotes the set of probability distributions on
S. For ease of exposition, we assume thatP is a closed set;
this is a standard assumption in the literature that seems
quite natural in our applications, and makes the statement
of our results simpler. IfPr ∈ ∆(X × Y), let PrX and
PrY denote the marginals ofPr onX andY, respectively.



Let PY = {PrY : Pr ∈ P}. If E ⊆ X × Y, then let
P | E = {Pr | E : Pr ∈ P,Pr(E) > 0}. HerePr | E
(denoted by some authors asPr(· | E)) is the distribution
onX × Y obtained by conditioning onE.

Loss Functions: As in GH, we are interested in an agent
who must choose some action from a setA, where the loss
of the action depends only on the value of random variable
Y . For ease of exposition, we assume in this paper that
X , Y, andA are always finite. We assume that with each
actiona ∈ A and valuey ∈ Y is associated some loss to
the agent. (The losses can be negative, which amounts to a
gain.) LetL : Y ×A → IR be the loss function.2

Such loss functions arise quite naturally. For example, in
a medical setting, we can takeY to consist of the possible
diseases andX to consist of symptoms. The setA consists
of possible courses of treatment that a doctor can choose.
The doctor’s loss function depends only on the patient’s
disease and the course of treatment, not on the symptoms.
But, in general, the doctor’s choice of treatment depends
on the symptoms observed.

Decision Rules: Suppose that the agent observes the
value of a variableX that takes on values inX . After
having observedX, she must perform an act, the qual-
ity of which is judged according to loss functionL. The
agent must choose adecision rulethat determines what she
does as a function of her observations. We allow decision
rules to be randomized. Thus, a decision rule is a func-
tion δ : X → ∆(A) that chooses a distribution over ac-
tions based on the agent’s observations. LetD(X ,A) be
the set of all decision rules. A special case is a determinis-
tic decision rule, which assigns probability 1 to a particular
action. If δ is deterministic, we sometimes abuse notation
and writeδ(x) for the action that is assigned probability
1 by the distributionδ(x). Given a decision ruleδ and a
loss functionL, let Lδ be the random variable onX × Y
such thatLδ(x, y) =

∑
a∈A δ(x)(a)L(y, a). Hereδ(x)(a)

stands for the probability of performing actiona according
to the distributionδ(x) over actions that is adopted whenx
is observed. Note that in the special case thatδ is a deter-
ministic decision rule,Lδ(x, y) = L(y, δ(x)).

A decision ruleδ0 is a priori minimax optimalwith respect
toP andA if

maxPr∈PEPr[Lδ0 ] = minδ∈D(X ,A)maxPr∈PEPr[Lδ].

That is,δ0 is a priori minimax optimal ifδ0 gives the best
worst-case expected loss with respect to all the distributions
in Pr. We can write max here instead of sup because of our
assumption thatP is closed. This ensures that there is some
Pr ∈ P for whichEPr[Lδ0 ] takes on its maximum value.

2We could equally well use utilities, which can be viewed as
a positive measure of gain. Losses seem to be somewhat more
standard in this literature.

A decision ruleδ1 is a posteriori minimax optimalwith
respect toP andA if, for all x ∈ X such thatPr(X =
x) > 0 for somePr ∈ P,

maxPr∈P|X=xEPr[Lδ1 ] =
minδ∈D(X ,A)maxPr∈P|X=xEPr[Lδ].

(1)

To get the a posteriori minimax-optimal decision rule we
do the obvious thing: ifx is observed, we simply condi-
tion each probability distributionPr ∈ P on X = x, and
choose the action that gives the least expected loss (in the
worst case) with respect toP | X = x. Since all distri-
butionsPr mentioned in (1) satisfyPr(X = x) = 1, the
minimum overδ ∈ D(X ,A) does not depend on the val-
ues ofδ(x′) for x′ 6= x; the minimum is effectively over
randomized actions rather than decision rules.

As the following example, taken from GH, shows, a pri-
ori minimax-optimal decision rules are in general different
from a posteriori minimax-optimal decision rules.

Example 2.1: Suppose thatX = Y = A = {0, 1} and
P = {Pr ∈ ∆(X × Y) : PrY(Y = 1) = 2/3}. Thus,
P consists of all distributions whose marginal onY gives
Y = 1 probability 2/3. We can think of the actions in
A as predictions of the value ofY . The loss function is
0 if the right value is predicted and 1 otherwise; that is,
L(i, j) = |i− j|. This is the so-called0/1 or classification
loss. It is easy to see that the optimal a priori decision rule is
to choose 1 no matter what is observed (which has expected
loss 1/3). Intuitively, observing the value ofX tells us
nothing about the value ofY , so the best decision is to pre-
dict according to the prior probability ofY = 1. However,
all probabilities onY = 1 are compatible with observing
eitherX = 0 or X = 1. That is, both(P | X = 0)Y
and(P | X = 1)Y consist of all distributions onY. Thus,
the minimax optimal a posteriori decision rule randomizes
(with equal probability) betweenY = 0 andY = 1.

Thus, if you make decisions according to the minimax rule,
then before making an observation, you will predictY = 1.
However,no matter what observation you make, after mak-
ing the observation, you will randomize (with equal prob-
ability) between predictingY = 0 andY = 1. Moreover,
you know even before making the observation that your
opinion as to the best decision rule will change in this way.

3 TWO GAME-THEORETIC
INTERPRETATIONS OF P

What does it mean that an agent’s uncertainty is character-
ized by a setP of probability distributions? How should
we understandP? We giveP a game-theoretic interpreta-
tion here: namely, an adversary gets to choose a distribu-



tion from the setP.3 But this does not completely specify
the game. We must also specifywhenthe adversary makes
the choice. We consider two times that the adversary can
choose: the first is before the agents observes the value of
X , and the second is after. We formalize this as two differ-
ent games, where we take the “adversary” to be a bookie.

We call the first game theP-game. It is defined as follows:

1. The bookie chooses a distributionPr ∈ P.
2. The valuex of X is chosen (by nature) according to

PrX and observed by both bookie and agent.
3. The agent chooses an actiona ∈ A.
4. The valuey of Y is chosen according toPr | X = x.
5. The agent’s loss isL(y, a); the bookie’s loss is
−L(y, a).

This is a zero-sum game; the agent’s loss is the bookie’s
gain. In this game, the agent’s strategy is a decision rule,
that is, a function that gives a distribution over actions for
each observed value ofX. The bookie’s strategy is a dis-
tribution over distributions inP.

We now consider a second interpretation ofP, character-
ized by a different game that gives the bookie more power.
Rather than choosing the distribution before observing the
value ofX, the bookie gets to choose the distribution after
observing the value. We call this theP-X-game.

1. The valuex of X is chosen (by nature) in such a way
thatPr(X = x) > 0 for somePr ∈ P, and observed
by both the bookie and the agent.

2. The bookie chooses a distributionPr ∈ P such that
Pr(X = x) > 0.4

3. The agent chooses an actiona ∈ A.
4. The valuey of Y is chosen according toPr | X = x.
5. The agent’s loss isL(y, a); the bookie’s loss is
−L(y, a).

Recall that a pair of strategies(S1, S2) is a Nash equilib-
rium if neither party can do better by unilaterally changing
strategies. If, as in our case,(S1, S2) is a Nash equilib-
rium in a zero-sum game, it is also known as a “saddle
point”; S1 must be a minimax strategy, andS2 must be
a maximin strategy [Gr̈unwald and Dawid 2004]. As the
following results show, an agent must be using an a pri-
ori minimax-optimal decision rule in a Nash equilibrium of
theP-game, and an a posteriori minimax-optimal decision
rule is a Nash equilibrium of theP-X-game. This can be
viewed as a justification for using (a priori and a posteriori)
minimax-optimal decision rules.

3This interpretation remains meaningful in several practical
situations where there is no explicit adversary; see the final para-
graph of this section.

4If we were to consider conditional probability measures, for
which Pr(Y = y | X = x) is defined even ifPr(X = x) =
0, then we could drop the restriction thatx is chosen such that
Pr(X = x) > 0 for somePr ∈ P.

Theorem 3.1: Fix X , Y,A, L, andP ⊆ ∆(X × Y).

(a) TheP-game has a Nash equilibrium(π∗, δ∗), where
π∗ is a distribution overP with finite support.

(b) If (π∗, δ∗) is a Nash equilibrium of theP-game such
thatπ∗ has finite support, then

(i) for every distributionPr′ ∈ P in the support of
π∗, we haveEPr′ [Lδ∗ ] = maxPr∈PEPr[Lδ∗ ];

(ii) if Pr∗ =
∑

Pr∈P,π∗(Pr)>0 π∗(Pr) Pr (i.e., Pr∗

is the convex combination of the distributions in
the support ofπ∗, weighted by their probability
according toπ∗), then

EPr∗ [Lδ∗ ] = minδ∈D(X ,A)EPr∗ [Lδ]
= maxPr∈P minδ∈D(X ,A)EPr[Lδ]
= minδ∈D(X ,A)maxPr∈PEPr[Lδ]
= maxPr∈PEPr[Lδ∗ ].

Once nature has chosen a value forX in theP-X-game,
we can regard steps 2–5 of theP-X-game as a game be-
tween the bookie and the agent, where the bookie’s strat-
egy is characterized by a distribution inP | X = x and the
agent’s is characterized by a distribution over actions. We
call this theP-x-game.

Theorem 3.2:Fix X , Y,A, L, P ⊆ ∆(X × Y).

(a) TheP-x-game has a Nash equilibrium(π∗, δ∗(x)),
whereπ∗ is a distribution overP | X = x with finite
support.

(b) If (π∗, δ∗(x)) is a Nash equilibrium of theP-x-game
such thatπ∗ has finite support, then

(i) for all Pr′ in the support ofπ∗, we have
EPr′ [Lδ∗ ] = maxPr∈P|X=xEPr[Lδ∗ ];

(ii) if Pr∗ =
∑

Pr∈P,π∗(Pr)>0 π∗(Pr) Pr, then

EPr∗ [Lδ∗ ] = minδ∈D(X ,A)EPr∗ [Lδ]
= maxPr∈P|X=x minδ∈D(X ,A)EPr[Lδ]
= minδ∈D(X ,A)maxPr∈P|X=xEPr[Lδ]
= maxPr∈P|X=xEPr[Lδ∗ ].

Since all distributions Pr in the expression
minδ∈D(X ,A)maxPr∈P|X=xEPr[Lδ] in part (b)(ii) are
in P | X = x, as in (1), the minimum is effectively over
randomized actions rather than decision rules.

The proof of Theorems 3.1 and 3.2, as well as all other
missing proofs, can be found in the full paper [Grünwald
and Halpern 2007]. These theorems can be viewed as say-
ing that there is no time inconsistency; rather, we must just
be careful about what game is being played. If theP-game
is being played, the right strategy is the a priori minimax-
optimal strategy, both before and after the value ofX is
observed; similarly, if theP-X-game is being played, the



right strategy is the a posteriori minimax-optimal strategy,
both before and after the value ofX is observed. Indeed,
thinking in terms of the games explains the apparent time
inconsistency. While it is true that the agent gains more in-
formation by observingX = x, in theP-X game, so does
the bookie. This information may be of more use to the
bookie than the agent, so, in this game, the agent can be
worse off by being given the opportunity to learn the value
of X.

Of course, in most practical situations, agents (robots,
statisticians,. . . ) are not really confronted with a bookie
who tries to make them suffer. Rather, the agents may have
no idea at all what distribution holds, except that it is in
some setP. Because all they know isP, they decide to
prepare themselves for the worst-case and play the mini-
max strategy. The fact that such a minimax strategy can
be interpreted in terms of a Nash equilibrium of a game
helps to understand differences between different forms of
minimax (such as a priori and a posteriori minimax). From
this point of view, it seems strange to have a bookie choose
between different distributions inP according to some dis-
tribution π∗. However, ifP is convex, we can replace the
distributionπ∗ on P by a single distribution inP, which
consists of the convex combination of the distributions in
the support ofπ∗; this is just the distributionPr∗ of The-
orems 3.1 and 3.2. Thus, Theorems 3.1 and 3.2 hold with
the bookie restricted to a deterministic strategy.

4 CHARACTERIZING A PRIORI
MINIMAX DECISION RULES

To get the a posteriori minimax-optimal decision rule we
do the obvious thing: ifx is observed, we simply condi-
tion each probability distributionPr ∈ P on X = x, and
choose the action that gives the least expected loss (in the
worst case) with respect toP | X = x.

We might expect that the a priori minimax-optimal deci-
sion rule should do the same thing. That is, it should be
the decision rule that says, ifx is observed, then we choose
the action that again gives the best result (in the worst case)
with respect toP | X = x. However, as shown in GH, this
intuition is incorrect in general. There are times, for exam-
ple, that the best thing to do is to ignore the observed value
of X, and just choose the action that gives the least ex-
pected loss (in the worst case) with respect toP, no matter
what valueX has. In this section we first give a sufficient
condition for conditioning to be optimal, and then charac-
terize when ignoring the observed value is optimal.

Definition 4.1 : Let 〈P〉 = {Pr ∈ ∆(X × Y) :
PrX ∈ PX and(Pr | X = x) ∈ (P | X = x)
for all x ∈ X such thatP | X = x is nonempty}.

Thus,〈P〉 consists of all distributionsPr whose marginal
onX is the marginal onX of some distribution inP and

whose conditional on observingX = x is the conditional
of some distribution inP, for all x ∈ X . ClearlyP ⊆ 〈P〉,
but the converse is not necessarily true. When it is true,
conditioning is optimal.

Proposition 4.2: If P = 〈P〉, then there exists an a priori
minimax-optimal rule that is also a posteriori minimax op-
timal. If, for all Pr ∈ P and all x ∈ X , Pr(X = x) > 0,
then every a priori minimax-optimal rule is also a posteri-
ori minimax optimal.

As we saw in Example 2.1, the minimax-optimal a pri-
ori decision rule is not always the same as the minimax-
optimal a posteriori decision rule. In fact, the minimax-
optimal a priori decision rule ignores the information ob-
served. Formally, a ruleδ ignores informationif δ(x) =
δ(x′) for all x, x′ ∈ X . If δ ignores information, defineL′δ
to be the random variable onY such thatL′δ(y) = Lδ(x, y)
for some choice ofx. This is well defined, sinceLδ(x, y) =
Lδ(x′, y) for all x, x′ ∈ X .

Theorem 4.3: Fix X , Y, L, A, and P ⊆ ∆(X × Y).
If, for all PrY ∈ PY , P contains a distributionPr′ such
that X and Y are independent underPr′, and Pr′Y =
PrY , then there is an a priori minimax-optimal decision
rule that ignores information. Under these conditions, if
δ is an a priori minimax-optimal decision rule that ig-
nores information, thenδ essentially optimizes with re-
spect to the marginal onY ; that is, maxPr∈P EPr[Lδ] =
maxPrY∈PY EPrY [L′δ].

GH focused on the case thatPY is a singleton (i.e., the
marginal probability onY is the same for all distributions
in P) and for allx, PY ⊆ (P | X = x)Y . It is immedi-
ate from Theorem 4.3 that ignoring information is a priori
minimax optimal in this case.

5 C-CONDITIONING & CALIBRATION

Conditioning is the most common way of updating uncer-
tainty. In this section, we examine updating by condition-
ing. The following definition makes precise the idea that a
decision rule is based on conditioning.

Definition 5.1: A probability update ruleis a function
Π : 2∆(X×Y) × X → 2∆(X×Y) mapping a setP of dis-
tributions and an observationx to a setΠ(P, x) of distribu-
tions; intuitively,Π(P, x) is the result of updatingP with
the observationx.

Definition 5.2: Let C = {X1, . . . ,Xk} be a partition of
X ; that is,Xi 6= ∅ for i = 1, . . . , k; X1 ∪ . . .Xk = X ;
andXi ∩ Xj = ∅ for i 6= j. If x ∈ X , let C(x) be the
cell containingx; i.e., the unique elementXi ∈ C such
that x ∈ Xi. TheC-conditioningprobability update rule
is the functionΠ defined by takingΠ(P, x) = P | X ∈



C(x). A decision ruleδ is based onC-conditioning if it
amounts to first updating the setP to P | X ∈ C(x), and
then taking the minimax-optimal distribution over actions
relative toP | X ∈ C(x). Formally, δ is based onC-
conditioning if, for allx ∈ X with Pr(X = x) > 0 for
somePr ∈ P,

max
Pr∈P|X∈C(x)

EPr[Lδ] = min
δ∈D(X ,A)

max
Pr∈P|X∈C(x)

EPr[Lδ].

All examples of a priori minimax decision rules that we
have seen so far are based onC-conditioning: Standard
conditioning is based onC-conditioning, where we take
C to consist of all singletons; ignoring information is also
based onC-conditioning, whereC = {X}. This suggests
that, perhaps, the a priori minimax decision rule must also
be based onC-conditioning. The following well-known ex-
ample shows that this conjecture is false.

Example 5.3 : [The Monty Hall Problem] [Mosteller
1965; vos Savant 1990]: Suppose that you’re on a game
show and given a choice of three doors. Behind one is a
car; behind the others are goats. You pick door 1. Before
opening door 1, Monty Hall, the host (who knows what is
behind each door) opens one of the other two doors, say,
door 3, which has a goat. He then asks you if you still want
to take what’s behind door 1, or to take what’s behind door
2 instead. Should you switch? You may assume that ini-
tially, the car was equally likely to be behind each of the
doors.

We formalize this well-known problem as aP-game, as
follows: Y = {1, 2, 3} represents the door which the car is
behind.X = {G2, G3}, where, forj ∈ {2, 3}, Gj corre-
sponds to the quizmaster showing that there is a goat behind
doorj. A = {1, 2, 3}, where actiona ∈ A corresponds to
the door you finally choose, after Monty has opened door
2 or 3. The loss function is once again the classification
loss,L(i, j) = 1 if i 6= j, that is, if you choose a door with
a goat behind it, andL(i, j) = 0 if i = j, that is, if you
choose a door with a car.P is the set of all distributionsPr
onX × Y satisfying

PrY(Y = 1) = PrY(Y = 2) = PrY(Y = 3) = 1
3

Pr(Y = 2 | X = G2) = Pr(Y = 3 | X = G3) = 0.

It is well known, and easy to show, that the minimax-
optimal strategy is always to switch doors, no matter
whether Monty opens door 2 or door 3. Since the game is
an instance of theP-game, this means that the decision rule
δ∗ given byδ∗(G2) = 3 ; δ∗(G3) = 2 is an a priori mini-
max rule. Clearly,δ∗ is not based onC-conditioning: there
exist only two partitions ofX . The corresponding two up-
date rules based onC-conditioning amount to, respectively,
(a) ignoringX and choosing each door with probability
1/3, or (b) conditioning onX in the standard way and thus

choosing each of the two remaining doors with probabil-
ity 1/2. Neither strategy (a) nor (b) is minimax optimal.
Thus, the a priori minimax decision rule in theP-game is
not always based onC-conditioning.

While the example shows thatC-conditioning is not al-
ways optimal in the minimax sense, it can be justified by
other means; as we now show,C-conditioning is closely
related tocalibration. Indeed, a probability update rule
is calibrated if and only if for eachP, it amounts toC-
conditioning for some partitionC of X . Calibration is
usually defined in terms of empirical data. To explain
what it means, consider a weather forecaster, who pre-
dicts the probability of rain every day. How should we
interpret the probabilities that she announces? The usual
interpretation—which coincides with most people’s intu-
itive understanding—is that, in the long run, on those days
at which the weather forecaster predict probabilityp, it will
rain approximately100p% of the time [Dawid 1982]. Thus,
for example, among all days for which she predicted0.1,
the fraction of days with rain was close to0.1 (given the
weather forecaster’s precision, we should require it to be
between, say,0.05 and0.15). A weather forecaster with
this property is said to becalibrated. If a weather forecaster
is calibrated, and you make bets based on her probabilistic
predictions (which are all accepted), then in the long run
you will not lose money.

If a weather forecaster is not calibrated, there exist bets
which seem favorable but which result in a loss. Note that
calibration is aminimal requirement: a weather forecaster
who predicts0.3 for every single day of the year may be
calibrated if it indeed rains on 30% of the days, but still
not very informative. Thus, given two calibrated forecast-
ers, we prefer the one that makes “sharper” predictions, in
a sense to be defined below.

In our case, we do not test probabilistic predictions with re-
spect to empirical relative frequencies, but with respect to
other sets of “potentially underlying” probability measures.
We are not the first to do this; see, for example, [Vovk,
Gammerman, and Shafer 2005]. The definition of calibra-
tion extends naturally to this situation. To see how, we first
define calibration with respect to a single underlying prob-
ability measure. LetP = {Pr} for a single distributionPr
and letΠ be a probability update rule (Definition 5.1) such
thatΠ({Pr}, x) contains just a single distribution for each
x ∈ X (for example,Π could be ordinary conditioning).
We define

R = {R : R = ( Π(P, x) )Y for some x ∈ X}. (2)

R is just the range ofΠ, restricted to distributions ofY ,
the random variable that we are interested in predicting;
its elements are the distributions onY that Pr is mapped
to, upon observing different values ofx. Note thatR
is defined relative to a probability update ruleΠ and a
setP of distributions. By our assumptions onP andΠ,



R = {{R1}, {R2}, . . .} is a set of singleton sets, each con-
taining one distribution onY. For{R} ∈ R, letXR be the
set ofx ∈ X that mapPr to R, i.e.

XR = {x ∈ X : ( Π({Pr}, x) )Y = {R}}.

Note that the sets{XR} partitionX . Π is calibrated relative
to P if for all R with {R} ∈ R, (Pr | X ∈ XR)Y = R.
Thus, conditioned on the event that the agent predictsY
using distributionR, the distribution ofY must indeed be
equal toR.

It is straightforward to generalize this notion to setsP of
probability distributions that are not singletons, and update
rulesΠ that map to sets of probabilities. Definition (2) re-
mains unchanged. ForR ∈ R, we now takeXR to be the
set ofx ∈ X that mapP toR, that is,

XR = {x ∈ X : ( Π(P, x) )Y = R}. (3)

Once again, the sets{XR} partitionX .

Definition 5.4 : Π is calibrated relative toP if for all
Pr ∈ P andR ∈ R, PrY (· | X ∈ XR) ∈ R.
Π is calibratedif it is calibrated relative to all sets of dis-
tributionsP ⊆ ∆(X × Y).

Proposition 5.5: For all partitions C of X and all P, C-
conditioning is calibrated relative toP.

Calibration as defined here is a very weak notion. For ex-
ample, the update ruleΠ(P, x) = ∆(X × Y) that maps
each combination ofx andP to the set of all distributions
onX × Y is calibrated under our definition. This update
rule loses whatever information may have been contained
in P, and is therefore not very useful. Intuitively, the fewer
distributions that there are inP, the more informationP
contains. Thus, we restrict ourselves to setsP that are as
small as possible, while still being calibrated.

Definition 5.6: Update ruleΠ′ is wider than update rule
Π relative toP if, for all x ∈ X , Π(P, x) ⊆ Π′(P, x).
Π′ is strictly widerrelative toP if the inclusion is strict for
some somex. Π is (strictly) narrower thanΠ′, relative to
P if Π′ is (strictly) wider thanΠ relative toP. Π is sharply
calibratedrelative toP if Π is calibrated relative toP and
there is no update ruleΠ′ that is calibrated and strictly nar-
rower thanΠ relative toP. Π is sharply calibratedif Π is
sharply calibrated relative to allP ⊆ ∆(X × Y).

We now want to prove that every sharply calibrated update
rule must involve conditioning. To make this precise, we
need the following definition.

Definition 5.7: Π is ageneralized conditioning update rule
if, for all P ⊆ ∆(X × Y), there exists a partitionC (that
may depend onP) such that for allx ∈ X , Π(P, x) = P |
C(x).

Note that in a generalized conditioning rule, we condition
on a partition ofX , but the partition may depend on the
setP. For example, for someP, the rule may ignore the
value ofx, whereas for otherP, it may amount to ordinary
conditioning. It easily follows from Proposition 4.2 that
every generalized conditioning rule is calibrated. The next
result shows that everysharplycalibrated update rule must
be a generalized conditioning rule.

Theorem 5.8: There exists an update rule that is sharply
calibrated. Moreover, every sharply calibrated update rule
is a generalized conditioning update rule.

Theorem 5.8 says that an agent who wants to be sharply
calibrated should update her probabilities using condition-
ing (although what she conditions on may depend on the
set of probabilities that she considers possible).

Given the game-theoretic interpretation of Section 3, we
might wonder if there is a variant of the games considered
earlier for which the equilibrium involves generalized con-
ditioning. As we show in the full paper, there is (although
the game is perhaps not as natural as the ones considered in
Section 3). Roughly speaking, we consider a three-player
game, with a bookie and two agents. The bookie again
chooses a probability distribution from a setP; the bookie
also chooses the loss function from some set. The first
agent observesP andx and updatesP to Px. The sec-
ond agent learnsPx andb (but notP andx) and makes the
minimax-optimal decision. As we show, in Nash equilib-
rium, the first agent’s updated set of probabilities,Px, must
be the result ofC-conditioning, where, as in Theorem 5.8,
C may depend onP.

6 DISCUSSION

We have examined how to update uncertainty represented
by a set of probability distributions, where we motivate up-
dating rules in terms of the minimax criterion. Our key
innovation has been to show how different approaches can
be understood in terms of a game between a bookie and
an agent, where the bookie picks a distribution from the
set and the agent chooses an action after making an obser-
vation. Different approaches to updating arise depending
on whether the bookie’s choice is made before or after the
observation. We believe that this game-theoretic approach
should prove useful more generally in understanding differ-
ent approaches to updating. We hope to explore this further
in future work.

We end this paper by giving an overview of the senses in
which conditioning is optimal and the senses in which it is
not, when uncertainty is represented by a set of distribu-
tions. We have established that conditioning the full setP
on X = x is minimax optimal in theP-x-game, but not
in theP-game. The minimax-optimal decision rule in the



P-game is often an instance ofC-conditioning, a general-
ization of conditioning. The Monty Hall problem showed,
however, that this is not always the case. On the other hand,
if instead of the minimax criterion, we insist that update
rules are calibrated, thenC-conditioning is always the right
thing to do after all.

There are two more senses in which conditioning is the
right thing to do. First, Walley [1991] shows that, in a
sense, conditioning is the only updating rule that isco-
herent, according to his notion of coherence. He justifies
coherence decision theoretically, but not by using the min-
imax criterion. Note that the minimax criterion puts a total
order on decision rules. That is, we can say thatδ is at least
as good asδ′ if

maxPr∈PEPr[Lδ] ≤ maxPr∈PEPr[Lδ′ ].

By way of contrast, Walley [1991] puts a partial order on
decision rules by takingδ to be at least as good asδ′ if

maxPr∈PEPr[Lδ − Lδ′ ] ≤ 0.

Since both maxPr∈PEPr[Lδ − Lδ′ ] and
maxPr∈PEPr[Lδ′ − Lδ] may be positive, this is indeed
a partial order. If we use this ordering to determine the
optimal decision rule then, as Walley shows, conditioning
is the only right thing to do.

Second, in this paper, we interpreted “conditioning” as con-
ditioning the full given set of distributionsP. Then condi-
tioning is not always an a priori minimax optimal strategy
on the observationX = x. Alternatively, we could first
somehow select asinglePr ∈ P, conditionPr on the ob-
servedX = x, and then take the optimal action relative
to Pr | X = x. It follows from Theorem 3.1 that the
minimax-optimal decision ruleδ∗ in aP-game can be un-
derstood this way. It defines the optimal response to the dis-
tribution Pr∗ ∈ ∆(X × Y) defined in Theorem 3.1(b)(ii).
If P is convex, thenPr∗ ∈ P. In this sense, the minimax-
optimal decision rule can always be viewed as an instance
of “conditioning,” but on a single specialPr∗ that depends
on the loss functionL rather than on the full setP.

It is worth noting that Grove and Halpern [1998] give an
axiomatic characterization of conditioning sets of probabil-
ities, based on axioms given by van Fraassen [1987, 1985]
that characterizing conditioning in the case that uncertainty
is characterized by a single probability measure. As Grove
and Halpern point out, their axioms are not as compelling
as those of van Fraassen. It would be interesting to know
whether a similar axiomatization can be used to character-
ize the update notions that we have considered here.
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