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Abstract

A Bayesian treatment of latent directed
graph structure for non-iid data is provided
where each child datum is sampled with a
directed conditional dependence on a single
unknown parent datum. The latent graph
structure is assumed to lie in the family of
directed out-tree graphs which leads to effi-
cient Bayesian inference. The latent likeli-
hood of the data and its gradients are com-
putable in closed form via Tutte’s directed
matrix tree theorem using determinants and
inverses of the out-Laplacian. This novel like-
lihood subsumes iid likelihood, is exchange-
able and yields efficient unsupervised and
semi-supervised learning algorithms. In ad-
dition to handling taxonomy and phyloge-
netic datasets the out-tree assumption per-
forms surprisingly well as a semi-parametric
density estimator on standard iid datasets.
Experiments with unsupervised and semi-
supervised learning are shown on various UCI
and taxonomy datasets.

1 INTRODUCTION

Many machine learning methods use graph connectiv-
ity structure to constrain the dependencies between
random variables or between the samples in a dataset.
If the graph structure is latent, Bayesian inference or
heuristics are used to recover it. This article explores a
distribution over a family of directed graphs known as
out-trees where Bayesian inference remains efficient.
Furthermore, the directed graph connectivity across
samples is helpful not only for structured datasets but
iid datasets as well.

Graph structure is useful to constrain dependencies
between random variables (Pearl, 1988; Meila &

Jaakkola, 2006), dependencies across samples 1 in a
dataset (Roweis & Saul, 2000; Carreira-Perpinan &
Zemel, 2004) or even a heterogeneous combination of
the two. It may be acceptable to heuristically choose
a single graph structure for some problems (Roweis &
Saul, 2000) but, in many settings, a Bayesian treat-
ment of latent graph structure can be more precise
(Friedman, 1998; Friedman & Koller, 2003; Kemp
et al., 2003; Neal, 2003). Tree structures are a partic-
ularly efficient family of subgraphs and are relevant in
many real-world non-iid datasets spanning dynamics,
genetics, biology, decision-making, disease transmis-
sion and natural language processing (Leitner et al.,
1996; Helmbold & Schapire, 1997; Willems et al.,
1995; Mau et al., 1999; Koo et al., 2007). Bayesian
inference over undirected trees is efficient (Meila &
Jaakkola, 2006) however, graph families beyond undi-
rected trees may require approximate inference. For
example, recovering an optimal graph is NP-hard for
graphs in families with more than 1 parent per node
and requires approximation methods like MCMC sam-
pling which may have slow mixing times (Friedman &
Koller, 2003).

This article uses graphs primarily to constrain depen-
dency across exchangeable samples in a dataset. We
will assume a latent graph structure was responsible
for generating the data and assume it lies in the family
of directed out-trees. Like undirected trees, this family
of directed graphs also benefits from efficient Bayesian
inference algorithms. However, the directed aspect of
out-trees is not only beneficial for non-iid structured
datasets like taxonomy trees it also (surprisingly) im-
proves density estimation for iid datasets. We conjec-
ture that the directed tree graph structure assumption
acts as a flexible semiparametric estimator that over-
comes mismatch between a parametric model and an
otherwise iid dataset.

1In manifold learning, dependencies across samples in
a dataset are often constrained using k-nearest neighbor
and/or maximum weight spanning tree subgraphs.



This paper is organized as follows. Section 2 describes
how out-trees may emerge sequentially in nature and
then presents a computationally convenient generative
model for them. Section 3 describes Bayesian infer-
ence under the latent out-tree assumption and intro-
duces Tutte’s directed matrix tree theorem for efficient
inference. Section 4 describes an unsupervised maxi-
mum likelihood approach to refining the parameters
for the out-tree model. Section 5 describes a semi-
supervised approach where the out-tree model can be
used to transfer inductive bias from inputs to labels.
A variational Bayesian setup for integrating over both
structure and parameters is described in Section 6. Ex-
periments with unsupervised learning and semisuper-
vised learning are shown in Section 9 and followed by
a brief discussion.

2 THE GENERATIVE MODEL

Consider a real-world example of a directed out-tree:
the genealogical dataset of neuroscience PhD gradu-
ates2. This is a population dataset containing t =
1, . . . , T input samples. Each sample or individual t in
this dataset is a node which has a single parent π(t),
the main doctoral advisor for student t. Also, each
node t has a corresponding attribute vector Xt associ-
ated with it which describes the student (dissertation
topic area, year of graduation, institute, etc.). One re-
alistic way such an out tree is generated is in a sequen-
tial or temporal manner. A root node labeled t = 1 is
sampled with a corresponding vector X1 of attributes.
Knowing the value X1 for the root, a number of its chil-
dren nodes are sampled with attributes that depend on
the current settings of the parent, X1. These attribute
vectors are drawn from a conditional asymmetric dis-
tribution p(X |X1). This is because an advisor is likely
to generate students with related dissertation topics,
within a finite number of years of his graduation, and
so on. This conditional mimics the process of muta-
tion in phylogeny. The children then become parents
themselves and go on to generate further descendants
by sampling again from the conditional distribution
p(Xt|Xπ(t)). Assume each attribute vector Xt is a 3D
Euclidean vector describing the PhD graduate. One
choice for the conditional distribution or mutation is
the conditioned Gaussian N (Xt|Σc|πXπ(t), I) with a
fixed correlation parameter Σc|π and identity variance.
Figure 1 shows some synthetic out-trees with 3D at-
tribute vectors generated by this conditional.

While the above sequential method for generating real-
world data is interesting, computational considera-
tions will encourage us to follow a slightly different
generative modeling assumption. The data in Figure 1

2Available online via http://neurotree.org.

Figure 1: Sampled out-trees using N (Xt|Σc|πXπ(t), I).

was actually generated via a non-sequential recipe as
follows. We assume an integer T is given that indi-
cates the total number of nodes. Then, from a prior
distribution over trees p(T ), an undirected tree T is
chosen to connect the T nodes. Then, we choose a
root node from the set of nodes 1, . . . , T . We then ob-
tain an out-tree by choosing all edges to point away
from the root. Next, the attributes of the root are
sampled from a marginal distribution p(Xr). Then,
traversing from parent to child along the out-tree, we
sample the child’s attribute vector Xt according to a
conditional (mutation) distribution that depends on
its parent Xπ(t) denoted by p(Xt|Xπ(t)).

As is often the case in learning, we assume that some
aspects of this generative process are hidden and must
be recovered via inference. For instance, we will as-
sume that the tree structure T , the choice of the root
and so on are not available to the learner. Instead, as
in many real-world datasets, we can only access the
node attributes X1, . . . , XT given in some arbitrary
ordering. One challenge is to recover the marginal
p(Xr) and conditional distributions p(Xt|Xπ(t)) from
the data. Another challenge is to recover information
about the lost connectivity structure T . Another chal-
lenge is to recover missing information in some of the
attribute vectors, i.e. hidden elements in X1, . . . , XT .
This article presents efficient Bayesian inference ap-
proaches to these problems.

3 EFFICIENT DISTRIBUTIONS

OVER OUT-TREES

We are given a training dataset containing input sam-
ples Xt for t = 1 . . . T in some arbitrary order. One
quantity to evaluate or manipulate is the likelihood
of the dataset p(X1, . . . , XT |θ, T ) given some model.
A popular method to recover a model of the dataset
is to find the model that maximizes the likelihood
score. An additional standard assumption most unsu-
pervised methods make is that the dataset is composed
of independently identically distributed samples. In
other words, p(X1, . . . , XT |θ, T ) =

∏T
t=1 p(Xt|θ). This

iid assumption can often be inappropriate for real



datasets. What is a more minimal set of assumptions
on the likelihood function we can make? Likelihoods
should be non-negative and sum to unity if we inte-
grate over all X1, . . . , XT . In addition, since the data
arrives in an arbitrary order, a likelihood should be in-
variant to permutation of the arguments {X1, . . . , XT}
for any given finite dataset size T . This property is
called finite exchangeability. It is less strict than in-
finite exchangeability which is in turn less strict than
iid sampling. 3 The next section derives a likelihood
that satisfies these properties yet generalizes the iid
setting by assuming data was sampled according to
an out-tree data structure. The generative model as-
sumes that we first form a complete tree with T nodes
(the number T is known a priori) and then children
are sampled from their parents using conditional dis-
tributions according to the out-tree.

More formally, define an out-tree as an acyclic graph T
with a set of T vertices X = X1, . . . , XT and directed
edges such that each node Xt has at one parent node
Xπ(t) and the root has no parents. Note, here we abuse
notation and take Xt to refer to the node correspond-
ing to the t’th sample as well as its attribute vector
interchangeably. Rooted out-trees are trees with di-
rected edges pointing away from a well-defined root.
For instance, X1 ← X2 ← X3 is an out-tree rooted at
X3. Conversely, rooted in-trees have all directed edges
from other nodes point towards the root. The previous
3-chain example is thus also an in-tree rooted at node
X1. Many directed trees are neither in-trees nor out-
trees. For instance, the tree X1 → X2 ← X3 → X4 is
a valid directed tree but neither a rooted in-tree nor a
rooted out-tree. For each choice of a root, the set of
rooted out-trees forms a disjoint set of T T−2 directed
trees. Therefore, there are T T−1 out-trees for T nodes.

If we knew the latent out-tree structure T that gener-
ated our T samples, the likelihood of the data under
the generative assumptions of Section 2 would factor-
ize as a product of conditionals of each node given its
parent. However, in general, the structure is unknown.
Consider treating structure as a random variable and
using Bayes’ rule to obtain a posterior distribution
over out-trees as follows:

p(T |X ) =
p(X|T )p(T )

p(X )
=

∏T
t=1 p(Xt|Xπ(t))p(T )

p(X1, . . . , XT )
.

A typical assumption is that the prior over out-tree
structures is chosen to be uniform yielding p(T ) =

3Another typical assumption most likelihoods require
(which is not strictly necessary) is consistency. For in-
stance, a likelihood should produce consistent marginals,
i.e.

P

XT
p(X1, . . . , XT |θ, T ) 6= p(X1, . . . , XT−1|θ, T − 1).

In this article, because of the explicit a priori dependence
on the number of samples T , such consistency statements
will not be pursued.

1
card(T ) = 1

T T−1 . This is merely a normalized constant

distribution over all possible out-trees. We rewrite the
posterior over out-trees as follows:

p(T |X ) =
p(X|T )

p(X )T T−1
=

1

Z

T
∏

t=1

p(Xt|Xπ(t)). (1)

where we have defined the partition function Z that
ensures that the likelihood term sums to unity over all
possible out-trees:

Z = p(X )T T−1 =
∑

T ∈Γ

T
∏

t=1

p(Xt|Xπ(t)).

Here, T enumerates over the set of all out-trees, Γ.
This is an unwieldy computation since there are T T−1

possible out-trees connecting T observation vertices.
Instead, we consider breaking up the summation into
all possible choices of the root of the out-tree r =
1 . . . T and a summation over the subset Γr of all T T−2

out-trees rooted at node r. It is straightforward to
show that all subsets of out-trees with different roots
are distinct, in other words Γi ∩ Γj = {} if i 6= j.
Furthermore, their union forms the set of all out-trees
Γ = ∪T

j=1Γj . Thus, the partition function Z is given
by the following sum:

Z =

T
∑

r=1

∑

Tr∈Γr

T
∏

t=1

p(Xt|Xπ(t))

=
T
∑

r=1

p(Xr)
∑

Tr∈Γr

T
∏

t6=r

p(Xt|Xπ(t))

where we have used the property that the root has no
parent node. To efficiently recover Z we will instead
recover the individual components of the above sum
over r:

Zr =
∑

Tr∈Γr

T
∏

t6=r

p(Xt|Xπ(t))

by making an appeal to the directed variant of Kir-
choff’s Matrix Tree Theorem, namely Tutte’s Directed
Matrix Tree Theorem (West, 1996). The directed ma-
trix tree theorem does not quite sum over all directed
trees. It sums over a subset: rooted out-trees. To
apply Tutte’s theorem we compute an asymmetric β

weight matrix of size T × T populated by all pairwise
conditional probabilities βuv = p(Xu|Xv). Note that
we will assume βvv = 0 since there are no edges be-
tween a node and itself. The matrix β allows us to
rewrite Zr as a product of edges in the tree instead of
a product of nodes:

Zr =
∑

Tr∈Γr

∏

uv∈Tr

βuv.



The out-tree Laplacian matrix Q is then obtained as
follows:

Q = diag(β~1)− β.

Here, take ~1 to be the ones column vector and note
that the diag(~v) operator gives a diagonal matrix with
~v on its diagonal. Note that this out Laplacian is not
symmetric since β is not symmetric. Similarly, the
in Laplacian is given by Qin = diag(~1β) − β. The
directed matrix tree theorem asserts that the number
(or weight) of out-trees rooted at node r is Zr and is
given by the matrix cofactor [Q]r obtained by deleting
the r’th row and r’th column of the matrix Q. The
precise formula is:

Zr = |[Q]r| = |[diag(β1)− β]r| .

Reinserting this formula into the above gives the total
partition function as:

Z =
T
∑

r=1

p(Xr)Zr =
T
∑

r=1

p(Xr)|[diag(β1)− β]r|

which is now efficient to evaluate. Interestingly, Z is
the sum of determinants of the minors of the Lapla-
cian. If β is symmetric, all terms in the summation
above are identical and we need to only work with a
single determinant of the T × T matrix. A symmetric
β would emerge, for example, if we chose symmetric
conditional distributions p(Xu|Xv) = p(Xv|Xu). In
addition, it is known that the log determinant of a
symmetric Laplacian matrix is a concave function of
the edge-weights (Jakobson & Rivin, 2002). In the
asymmetric case, however, the log-partition function
does not preserve concavity.

A naive implementation recovers Z in O(T 4) however
it is possible in cubic time as in (Jebara & Long, 2005;
Koo et al., 2007) via straightforward applications of
Woodbury’s formula. This is done by creating a ma-
trix of size (T + 1)× (T + 1) called Q̂:

Q̂ =

[

1 ~pT

−~p Q

]

where ~p is a unit-normalized vector of length T whose
entries are proportional to the root probabilities:

~p(r) =
p(Xr)

∑T

r=1 p(Xr)
.

The partition function can then be computed by a
single evaluation of the matrix determinant as Z =
(
∑T

r=1 p(Xr))|Q̂| which is O((T + 1)3) although faster
methods are also possible (Kaltofen & Villard, 2004).
This is an improvement over the summation of smaller
determinants which required O(T 4). In addition, for

numerical reasons, we use the logarithm of the par-
tition function. This is recovered via the trace of the
matrix logarithm (or the sum of the log-singular values
after an SVD) as:

lnZ = ln(

T
∑

r=1

p(Xr)) + tr

(

ln

[

1 ~pT

−~p Q

])

(2)

which takes O((T + 1)3) time. This computation is
more efficient than enumerating over all T T−1 out-
trees as in the normalized posterior of Equation 1
and makes it possible to consider datasets beyond a
thousand points. To scale further, a wide set of ap-
proximate methods for large matrices can be lever-
aged including Nystrom methods (Williams & Seeger,
2001; Drineas & Mahoney, 2005) and column sam-
pling. These methods will be investigated in future
work but were not necessary for initial experiments.

4 MAXIMUM tdid LIKELIHOOD

An interesting property of the partition function Z is
that it forms a finitely exchangeable tdid or tree depen-
dent identically distributed likelihood. The likelihood
of the data is p(X ) = ZT 1−T or more explicitly:

p(X1, . . . , XT ) =
1

T T−1

T
∑

r=1

p(Xr) |[diag(β1)− β]r|

(3)
which degenerates into the iid likelihood when the con-
ditional dependence between parent and child nodes is
extinguished.

Theorem 1 If the conditional dependence of a child
node given a parent node degenerates into the marginal
p(Xt|Xπ(t))→ p(Xt) the tdid likelihood simplifies into
the iid likelihood.

Proof 1 Work backwards by writing the tdid likeli-
hood in terms of a product over nodes:

p(X1, . . . , XT ) =
1

T T−1

T
∑

r=1

p(Xr)
∑

Tr∈Γr

T
∏

t6=r

p(Xt|Xπ(t)).

Removing the dependence on the parent produces:

p(X1, . . . , XT ) =
1

T T−1

T
∑

r=1

∑

Tr∈Γr

T
∏

t=1

p(Xt)

which then simplifies into the iid likelihood:

p(X1, . . . , XT ) =

∑T
r=1 T T−2

T T−1

T
∏

t=1

p(Xt) =

T
∏

t=1

p(Xt).



Thus a generalization of iid likelihood emerges by inte-
grating over a latent out-tree sampling structure. One
natural way of performing unsupervised learning is to
maximize this tdid likelihood to recover, for instance, a
good setting of the parameters θ that govern the con-
ditional distribution of child given parent. Equation 3
acts as a novel maximum likelihood estimator. We
rewrite the tdid likelihood to make the dependence on
the conditional distribution’s parameters θ more ex-
plicit:

p(X1, . . . , XT |θ) =
Z(θ)

T T−1
.

This likelihood satisfies certain desiderata outlined
earlier. First, it is invariant to reordering of
{X1, . . . , XT } and therefore is finitely exchangeable.
Furthermore, it is easy to verify that p(X ) ≥ 0
and sums to unity when integrated over all possible
X1, . . . , XT .

We next consider maximum likelihood unsupervised
learning where we find a θ that produces a large
p(X|θ). We maximize the log tdid likelihood using gra-
dient ascent on the parameters. The gradient for any
scalar parameter θi is given by the chain rule applied
to Equation 2:

∂ lnZ

∂θi

=
1

∑T

r=1 p(Xr)

T
∑

r=1

∂p(Xr)

∂θi

+ tr

(

Q̂−1 ∂Q̂

∂θi

)

The main computational requirement for evaluating
the gradient is the O((T +1)3) matrix inversion. How-
ever, the computation of the gradient can easily be
approximated for further efficiency.

Given an initial guess for θ, it is possible to follow the
gradient or perform line-search. Line search is con-
venient since evaluating determinants is faster than
matrix inversion. Note that maximum likelihood with
incomplete information is being performed since we
never require anything more than the {X1, . . . , XT}
population data (there is no additional information
about the tree structure).

While any exponential family distribution could be
used to specify the marginal and conditional distri-
butions, we focus on the Gaussian case. The following
marginal-conditional decomposition of its parameters
holds θ = {µc, µπ, Σc|π, Σcc, Σππ}. These are two vec-
tors in R

D and three matrices in R
D×D. We further as-

sume matrices Σcc and Σππ are positive definite. This
gives the following Gaussian probabilities for the root
nodes:

p(Xr|θ) = N (Xr|µπ , Σππ),

and the following conditional Gaussian probability of
child given parent:

p(Xt|Xπ(t), θ) = N (Xt|Σc|πXπ(t) + µc, Σcc).

If we are given a parameter setting and if all Xt vari-
ables are observed, it is straightforward to apply these
formulae. The resulting probabilities are inserted into
the out Laplacian which efficiently recovers the likeli-
hood value or the gradients for unsupervised learning.

Given the gradient and the likelihood evaluation, we
can now readily maximize the tdid likelihood. However
since it is not concave in the exponential family case
except when tdid degenerates into iid, we prefer to ini-
tialize with the iid solution. For example, in the Gaus-
sian case, a reasonable initialization for θ is to learn
the model under iid assumptions for the seed model
and then perform maximum tdid likelihood thereafter.

Once we have learned a model θ∗ from training data
X , we evaluate the test likelihood on new data X̃ =
{X̃1, . . . , X̃U} according to:

p(X̃ |X , θ∗) =
p(X̃ ,X|θ∗)

p(X|θ∗)
=

ZX∪X̃ (θ∗)

ZX (θ∗)

T (T−1)

(T + U)(T+U−1)
.

It is straightforward to show that this quantity still in-
tegrates to one when we integrate over X̃ . This simply
involves computing the partition function for the test
data aggregated with the training data ZX∪X̃ relative
to the partition function for the training data alone
ZX . Both these quantities involve the determinant for-
mula we outlined. Contrast the above test likelihood
score to the traditional test likelihood score produced
by an iid model which simplifies due to factoring:

piid(X̃ |X , θ∗) =

∏T

j=1 p(Xj |θ∗)
∏U

i=1 p(X̃i|θ∗)
∏T

j=1 p(Xj |θ∗)
.

In iid each test point data is independent of the train-
ing data and all other test points given the model
parameters θ∗. Thus, the tdid likelihood is semi-
parametric since, in addition to depending on parame-
ters θ, there is a non-parametric dependence on other
training and test points. In fact, if we set the condi-
tional Gaussians such that Σc|π = I and µcc = 0, tdid
can mimic non-parametric Parzen estimation.

5 SEMI-SUPERVISED OUT-TREES

Another application of the latent out-tree assumption
is in semi-supervised learning problems (Kemp et al.,
2003) where output labels are given in addition to in-
put samples. Consider a label yt which is generated
from a mutation process over the branches of the tree
T just as the attributes of the node Xt are also mu-
tations from their parents. This mutation process de-
fines a distribution over possible labels. For instance,
yt may indicate if an individual in a population has di-
abetes and Xt is a vector of anatomical features for the
individual. Instead of generating a label that depends



only on the input, we could also consider dependence
of a child label on a parent input and a parent label. In
other words, for training samples Xt and correspond-
ing labels yt for t = 1 . . . T , we have the following
likelihood for a known out-tree T :

p(X1, y1, . . . , XT , yT |T ) =

T
∏

t=1

p(Xt, yt|Xπ(t), yπ(t)). (4)

The derivations for the partition function proceed as
before but now involve a directed Laplacian built from
edge weights using conditionals between both inputs
and outputs, i.e. βuv = p(Xu, yu|Xv, yv). We may
make more restrictive factorization assumptions on
these conditional relationships, for instance, yt might
depend only on Xt. A more interesting assumption
is yt is independent of input data altogether and is
only conditionally dependent on its parent’s label yπ(t).
In other words, the mutation conditional simplifies
into p(yt|yπ(t))p(Xt|Xπ(t)). In an iid classification set-
ting, this radical assumption would make learning im-
possible since output data is independent from input
data. However, in a latent out-tree setting, inputs and
outputs are only conditionally independent given tree
structure. When tree structure is unknown, depen-
dence between inputs and outputs emerges without an
explicit relationship between input and output spaces
(parametric or otherwise). This is because X and y

are sampled given the parent random variable T , i.e.
X ← T → y. Therefore, observing the input induces
a posterior on T which subsequently induces a pos-
terior on labels. This is particularly useful when we
cannot make explicit assumptions about the paramet-
ric relationship between the input and output spaces.
In these settings, the latent out-tree may be a good
source of inductive bias to couple inputs to outputs
especially if the number of labeled outputs is small.

To recover the settings of the unobserved yt labels, one
approach is to maximize likelihood while integrating
over T . Assume we have observed the labels for the
training points Y = {y1, . . . , yT } but not for the test
points Ỹ = {ỹ1, . . . , ỹU}. To predict labels, we need
the conditional posterior over unobserved labels given
all other observed data, p(Ỹ|X , X̃ ,Y, θ) as follows:

p(Ỹ|X , X̃ ,Y, θ) =
p(X , X̃ ,Y, Ỹ|θ)

∑

Ỹ p(X , X̃ ,Y, Ỹ|θ)
.

Instead of maximizing the above conditional latent
likelihood, we simply maximize the joint latent like-
lihood (a common simplification in many learning
frameworks) to recover parameters θ and unknown la-
bels:

p(X , X̃ ,Y, Ỹ|θ) =
Z(Ỹ, θ)

(T + U)(T+U−1)

where we have rewritten the partition function in
terms of both the unknown Y and unknown θ which
need to be specified to construct the out Laplacian
Q̂. We initialize both randomly and then maximize
the partition function using gradient ascent for θ as in
the unsupervised learning case and maximize over un-
known labels Ŷ by greedily flipping individual labels
to increase the partition function. This iterative hill
climbing scheme produces a final set of parameters and
labels. While investigating a label flip in the output, it
is useful to avoid full matrix inversion and full matrix
determinants since each label flip only involves a rank
1 change to the out Laplacian matrix Q̂ and thus each
step of hill climbing requires no more than quadratic
time. This and intermediate caching of results allows
efficient prediction of labels.

6 VARIATIONAL BAYES

So far we have considered the latent tdid likelihood
which involves agnostically integrating over all struc-
tures T . However, we have assumed that the pa-
rameters θ are given or are recovered by a point es-
timator such as maximum likelihood. A more thor-
ough Bayesian approach is to consider integrating over
both parameters θ and structure T after introducing
a prior distribution on both. In such a setting, the
nonparametric density estimator becomes reminiscent
of other nonparameteric Bayesian methods such as
Dirichlet processes (Teh et al., 2004; Neal, 2003; Fer-
guson, 1973) and infinite mixture models (Rasmussen,
1999; Beal et al., 2002). The joint integration over
parameters and structure recovers the evidence of the
data p(X ) or equivalently the log-evidence E = ln p(X )
(Friedman & Koller, 2003). Consider first splitting the
parameters θ into those adjusting the distribution over
root θm and those adjusting the distribution of child
given parent θc. We assume the root p(Xr|θm) and
conditional distributions p(Xt|Xπ(t), θc) are in the ex-
ponential family and the priors on their parameters
p(θ) = p(θm)pc(θc) are conjugate. Integrating with a
uniform structure prior p(T ) = 1

T T−1 and making the
natural assumption that the prior over structure and
parameters factorizes yields:

E = ln

∫

θ

T
∑

r=1

p(Xr|θm)
∑

Tr

T
∏

t6=r

p(Xt|Xπ(t), θc)p(T )p(θ)

which unfortunately is an intractable quantity. We in-
stead consider a lower bound on the evidence. This is
done by introducing variational distributions, for in-
stance, the distribution q(r) over choices for the root



and applying Jensen.

E ≥
T
∑

r=1

q(r) ln

∫

θ

p(Xr|θm)
∑

Tr

T
∏

t6=r

p(Xt|Xπ(t), θc)p(θ)

+H(q)− (T − 1) lnT

We also introduce variational distributions over r =
1, . . . , T out-trees each rooted at node r which we
denote by qr(Tr) and a variational distribution over
the parameters qc(θc). Re-applying Jensen’s inequal-
ity produces:

E ≥
∑

r

q(r) ln

∫

θm

p(Xr|θm)p(θm)− (T − 1) lnT

+
∑

r,Tr

q(r)qr(Tr)
T
∑

t6=r

∫

θc

qc(θc) ln p(Xt|Xπ(t), θc)

+H(q) +
∑

r

q(r)H(qr)−KL(qc‖pc).

Above, H denotes the Shannon entropy and KL de-
notes the Kullback-Leibler divergence. Update rules
for each variational distribution iteratively maximize
the lower bound by taking derivatives and setting to
zero. We update the density over out-trees rooted at
node r via:

qr(Tr) =
1

Zr

T
∏

t6=r

e
R

θc
qc(θc) ln p(Xt|Xπ(t),θc).

As in Section 3 this can be rewritten as a product
over edges in the out-tree Tr and summarized simply
by a T × T matrix β whose off diagonal entries are
βuv =

∫

θc
qc(θc) ln p(Xu|Xv, θc). For exponential fam-

ily p(Xu|Xv, θc), such integrals are easy to solve (Box
& Tiao, 1992). Each Zr is also straightforward to re-
cover using Tutte’s theorem. The update for the q(r)
distribution is:

q(r) ∝ eH(qr)

∫

θm

p(Xr|θm)p(θm)

×e
P

Tr
qr(Tr)

P

T
t6=r

R

θc
qc(θc) ln p(Xt|Xπ(t),θc)

where the entropy H(qr) and the expectation over
qr(Tr) are efficient to compute from the β matrix
(Meila & Jaakkola, 2006). Furthermore, the integrals
∫

θm
p(Xr|θm)p(θm) are known for exponential families.

We update the distribution over parameters via:

qc(θc) ∝ p(θc)e
P

r,Tr
q(r)qr(Tr)

P

T
t6=r ln p(Xt|Xπ(t),θc)

= p(θc)
∏

u6=v

p(Xu|Xv, θc)
P

r,Tr
q(r)qr(Tr)δ(uv∈Tr).

This is simply the prior times a product over all
pairs of data-points likelihoods with different weights

qc(θc) ∝ p(θc)
∏

u6=v p(Xu|Xv, θc)
Wuv . These weights

are recovered easily from the current β matrix.

A variational Bayesian treatment is possible over joint
out-tree structure and parameters. The method allows
us to refine a lower bound on evidence and permits full
(nonparametric) Bayesian estimation with out-trees.

7 STATIONARY MUTATION

It is helpful to distinguish some important differences
between the Bayesian averaging over out-trees here
and the Bayesian inference of tree belief networks pre-
sented in (Jaakkola et al., 1999; Meila & Jaakkola,
2006). While elegantly providing a tractable compu-
tation of the Bayesian inference, (Meila & Jaakkola,
2006) makes no requirement on the stationarity of
the conditional distribution p(Xt|Xπ(t), θc) which is a
key distinguishing component of the out-tree frame-
work. In other words, in (Jaakkola et al., 1999; Meila
& Jaakkola, 2006) each conditional has its own pa-
rameter θt and the samples are drawn from custom
conditionals p(Xt|Xπ(t), θt). If one assumes decompos-
able priors, the Bayesian evidence and Bayesian infer-
ence jointly over parameter and structure is elegantly
tractable. However, it explores distinct θt for all con-
ditionals. This article introduces the constraint that
θt = θt′ = θc for all t = 1, . . . , T except for the root
node. This constraint greatly restricts the model and
assumes that the mutation distribution is stationary
across all samples. In other words the parameters of
the conditional are fixed. This is a key difference and
permits us to recover the iid setting as a special case
when the conditional dependence is extinguished. The
unrestricted Bayesian inference method in (Meila &
Jaakkola, 2006) can be seen as a step in the variational
Bayesian procedure since the update rule for the dis-
tribution qc(θc) collapses the individual conditionals
into a single θc model.

8 HILBERT GAUSSIANS

In addition to the Gaussian, many exponential fam-
ily choices for the marginal distribution over root at-
tributes p(Xr|θm) and for the conditional p(Xu|Xv, θc)
are possible and computationally convenient. One use-
ful feature of the Gaussian is that it is readily con-
verted into conditional form and leads to a flexible
linear relationship between parent and child which is
determined primarily by the variable Σc|π. To go be-
yond this linear relationship, we may use a mapping
on the features or attributes of the parent node which
in no way changes the normalization properties of the
Gaussian. Thus, we may consider first mapping the
parent’s features into a higher dimensional vector rep-



Dataset Spiral Heart Diabetes Liver
(D, T ) (3, 534) (13,139) (8,268) (6,200)
Parzen -5.61e3 -1.94e3 -6.25e3 -3.41e3
GMM-1 -1.36e3 -2.02e4 -2.12e5 -2.53e4
GMM-2 -1.36e3 -3.23e4 -2.85e5 -1.88e4
GMM-3 -1.19e3 -2.50e4 -4.48e5 -2.79e4
GMM-4 -7.98e2 -1.68e4 -2.03e5 -2.62e4
GMM-5 -6.48e2 -3.15e4 -3.40e5 -3.23e4
GMM-∞ -4.86e2 -4.02e2 -8.22e2 -4.56e2

tdid -3.91e2 -5.29e2 -8.87e2 -4.99e2

Table 1: Gaussian test log-likelihoods using RBF
Parzen estimators, EM mixtures of Gaussians, the ∞
Gaussian mixture model, and the tdid estimator.

resentation φ(Xπ(t)) of dimensionality R
H and then

learning a matrix Σc|π of size D×H . This is a gener-
alized linear conditional model that can capture more
complex relationships between the parent and child
nodes. In such a setting, the conditional Gaussian
relationship need not be represented explicitly in the
space of φ(Xπ(t)) but only implicitly in kernelized form
over each dimension of the input space:

p(X |Xπ) =
D
∏

d=1

N

(

X(d)

∣

∣

∣

∣

∣

T
∑

t=1

αt,dk(Xπ, Xt) + µd, σd

)

where the unconditional means µd, variances σd and
weights αt,d are scalars for t = 1, . . . , T and d =
1, . . . , D, the latter of which indexes the dimensions
of the attributes. Furthermore, the function k(., .) can
be any kernel that maps a pair of inputs in the sample
space into a scalar measurement of affinity. This gives
a general way of extending the linearity assumptions
in the conditional model. Instead of making the con-
ditional dependence linear in the values of the parent
attributes, we can explore linearity in any features of
the parent attributes which leads to another source of
nonparametric flexibility in the estimator.

9 EXPERIMENTS

To visualize the out-tree model’s ability to fit data,
we estimated marginal and conditional Gaussian pa-
rameters using the latent likelihood for the UCI
Spiral dataset in Figure 2(a). Once the θ =
{µc, µπ, Σc|π, Σcc, Σππ} parameters were recovered (a
total of 27 scalar degrees of freedom), they were used
to generate synthetic datasets of 600 samples in Fig-
ures 2(b), (c) and (d). In the last example, the matrix
Σcc was reduced to sample a spiral with less noise.
Notice how the datasets can produce slightly different
spirals that may have more or fewer turns but still
maintain the appropriate overall shape.
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Figure 2: Spiral data density estimation.

We next show more quantitative unsupervised den-
sity estimation experiments on standard UCI datasets
where a large test log-likelihood implies a better den-
sity estimate. These experiments closely follow the
format in (Jebara et al., 2007). Table 1 summarizes
the results with various Gaussian models including the
marginal-conditional Gaussian model for the tdid out-
tree approach. On 4 standard datasets (we only use
one class for labeled datasets), the test log-likelihood
was evaluated after using a variety of density estima-
tors. These estimators include a nonparametric Parzen
RBF estimator with a varying scale parameter σ. In
addition, a mixture of 1 to 5 Gaussians were fit us-
ing Expectation Maximization to maximize iid like-
lihood. Comparisons are also shown with semipara-
metric density estimators like the infinite mixture of
Gaussians (Rasmussen, 1999). Cross-validation was
used to choose the σ, and EM local minimum (from
ten initializations), for the Parzen and EM approaches
respectively. Similarly, cross-validation was used to
early-stop the Bayesian out-tree maximum likelihood
gradient ascent procedure although this did not have
a large effect on performance. Train, cross-validation
and test split sizes where 80%, 10% and 10% respec-
tively. The 10 fold averaged test log-likelihoods show
that the new method outperforms traditional mixture
modeling and Parzen estimators and is comparable to
semiparametric methods such as the infinite Gaussian
mixture (iid−∞) model (Rasmussen, 1999). Despite
the cubic time linear algebra steps for tdid estimation,
the infinite Gaussian mixture model was the most com-
putationally demanding method.

In a semi-supervised learning problem, we evaluated
how well the latent out-tree structure works for clas-



sification and its ability to perform inductive transfer.
First, θ is learned from only input samples in an un-
supervised manner and the Gaussian parameters Σc|π

and Σcc ∝ I are recovered as above by maximizing the
partition function. Then, observed labels are used in
the following conditionals to construct out Laplacian:

p(Xu|Xv) = N (Xu|Σc|πXv, σI)

p(yu|yv) = αI(yu = yv) + (1− α)I(yu 6= yv).

Here, the mutation on the outputs is independent of
the mutation on the inputs and is simply built from
indicator functions with a parameter α which controls
the stickiness of the label across parent to child. Since
only some labels are known, the unknown ones are
initialized randomly and improved by maximizing Z.
This is done with Σc|π and Σcc ∝ I locked from their
unsupervised values. The unknown discrete labels are
greedily explored to further increase the partition func-
tion. For comparison, support vector machines were
trained on the labeled X and y data.
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Figure 3: Labeling error rates (averaged over tasks)
for Out-Trees and SVMs for salamanders taxonomy.

To evaluate the semi-supervised learning method, two
taxonomic datasets (Salamanders and Crustaceans)
were used as in (Kemp et al., 2003). These are groups
of T = 30 and T = 56 species nodes and D = 19 and
D = 74 attribute dimensions respectively. Each has
a number of discrete attributes describing the exter-
nal anatomy of each species. These datasets do not
have class labels. Therefore each attribute was in turn
used as a label to be predicted from the input data.
Each dataset therefore generates D discrete prediction
tasks. To reduce dimensionality and avoid redundan-
cies (some attributes have the same settings as the tar-
get predictions), the remaining D − 1 attributes were
converted into 3D coordinates using PCA before be-
ing used as inputs (both the SVM and the out-tree

method are similarly hindered by the resulting loss of
information). The input attributes for each problem
is a set of 3D vectors X1, . . . , XT and the targets are
the original discrete-valued y1, . . . , yT labels.
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Figure 4: Labeling error rates (averaged over tasks)
for Out-Trees and SVMs for crustaceans taxonomy.

Each task was split into training and testing compo-
nents and the out-tree model was fit and used to find
labels. Results were compared with an SVM baseline
classifier using different kernel functions. In all exper-
iments for a given number of labeled examples, half
the unlabeled examples were used for cross-validation
of α for the out-tree model and C for the SVM. The re-
maining half of the unseen labels were used for testing.
Figure 3 shows the average error rate on random folds
for all tasks as the number of training examples is var-
ied for salamander species taxonomy. Similarly, Fig-
ure 4 shows the crustaceans taxonomy. The out-tree
has a statistically significant advantage over both lin-
ear and RBF SVMs when classifying data that obeys
a directed tree structure.

10 DISCUSSION

This article described a Bayesian treatment of a latent
directed out-tree connectivity on non-iid data-points.
This led to a generative model appropriate for tax-
onomy and tree data as well as an interesting semi-
parametric density estimator for datasets in general.
The matrix tree theorem was extended to directed
trees and enjoys the same efficient Bayesian inference
properties as its undirected counterpart. A novel tdid
likelihood emerges which permits the recovery of both
a marginal density on nodes as well as the conditional
of each node given its latent parent. The new likeli-
hood is exchangeable and is a direct generalization of
iid likelihood. It degenerates into iid when conditional



dependencies between children and parents collapse. A
variational Bayesian treatment is also possible by inte-
grating over both parameters and out-tree structures
jointly. Experiments with unsupervised and semisu-
pervised learning were promising.
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