
Partitioned Linear Programming Approximations for MDPs

Branislav Kveton
Intel Research

Santa Clara, CA
branislav.kveton@intel.com

Milos Hauskrecht
Department of Computer Science

University of Pittsburgh
milos@cs.pitt.edu

Abstract

Approximate linear programming (ALP) is an ef-
ficient approach to solving large factored Markov
decision processes (MDPs). The main idea of the
method is to approximate the optimal value func-
tion by a set of basis functions and optimize their
weights by linear programming (LP). This paper
proposes a new ALP approximation. Comparing
to the standard ALP formulation, we decompose
the constraint space into a set of low-dimensional
spaces. This structure allows for solving the new
LP efficiently. In particular, the constraints of the
LP can be satisfied in a compact form without an
exponential dependence on the treewidth of ALP
constraints. We study both practical and theoret-
ical aspects of the proposed approach. Moreover,
we demonstrate its scale-up potential on an MDP
with more than2100 states.

1 Introduction

Markov decision processes (MDPs) [19] are an established
framework for solving sequential decision problems under
uncertainty. Unfortunately, traditional methods for solving
MDPs, such as value and policy iteration, are unsuitable for
solving real-world problems. These problems are generally
structured, and their state and action spaces are represented
by state and action variables. The size of these problems is
naturally exponential in the number of the variables, and so
are their exact solutions. Approximate linear programming
(ALP) [21] has emerged as a promising approach to solving
these problems efficiently [6, 12, 15].

The main idea of this method is to approximate the optimal
value function by a set of basis functions and optimize their
weights by linear programming (LP). The optimization can
be performed in a structured manner [10, 20]. The structure
is a result of combining the structure of factored MDPs and
linear value function approximations.

The complexity of computing exact ALP solutions [10, 20]
is exponential in the treewidth of the dependency graph that

represents the constraint space in ALP. Therefore, when the
treewidth of an ALP is large, its exact solution is infeasible.
This type of problems can be still solved approximately us-
ing Monte Carlo constraint sampling [7, 14]. This approach
can be interpreted as an outer approximation to the feasible
region of the ALP.

In this work, we propose inner approximations to the feasi-
ble region. In comparison to the standard ALP formulation,
the constraint space is factored into a set of subspaces. This
structure allows for solving the new LP more efficiently. In
particular, its constraints can be satisfied in a compact form
without an exponential dependence on the treewidth of the
original constraint space. We investigate both practical and
theoretical aspects of the approach. In addition, we demon-
strate that the approach yields an exponential speedup over
ALP.

The paper is organized as follows. First, we review factored
MDPs [5] and linear value function approximations [2, 22].
Second, we discuss in detail existing work on approximate
linear programming. Third, we propose a novel partitioned
ALP formulation and study its properties. Finally, we eval-
uate the quality of the approximation on decision problems
with more than2100 states.

2 Factored MDPs

Many real-world decision problems are naturally described
in a factored form. Factored MDPs [5] allow for a compact
representation of this structure.

A factored MDP[5] is a 4-tupleM = (X,A, P,R), where
X = {X1, . . . ,Xn} is a state space represented by a set of
state variables,A = {a1, . . . , am} is a finite set of actions1,
P (X′ | X,A) is a transition function, which represents the
dynamics of the MDP, andR is a reward function assigning
immediate payoffs to state-action configurations. The state
of the system is completely observed and given by a vector
of value assignmentsx = (x1, . . . , xn).

1For simplicity of exposition, we consider an MDP model with
a single action variableA. Our ideas straightforwardly generalize
to MDPs with factored action spaces [11].

Transition model: The transition model is represented by
a conditional probability distributionP (X′ | X,A), where
X andX′ denote the state variables at two successive time
steps. Since the full tabular representation ofP (X′ | X,A)
is infeasible when the number of state variables is large, we
assume that the distribution factors alongX′ as:

P (X′ | X, a) =

n∏

i=1

P (X ′i | Par(X
′
i), a) (1)

and is described compactly by adynamic Bayesian network
(DBN) [8]. The network reflects independencies among the
variablesX andX′ given an actiona. One-step dynamics
of every state variable is given by its conditional probability
distributionP (X ′i | Par(X

′
i), a), wherePar(X ′i)⊆X is the

parent set ofX ′i. The parent set is usually a small subset of
state variables which simplifies the parameterization of the
model.

Reward model: The reward model is factored similarly to
the transition model. Specifically, the reward function:

R(x, a) =
∑

j

Rj(xj , a) (2)

is an additive function of local reward functions defined on
the subsetsXj andA. These local functions are compactly
represented by reward nodesRj , which are conditioned on
their parent setsPar(Rj) = Xj ∪ A.

Optimal value function and policy: The quality of a pol-
icy π is measured by theinfinite horizon discounted reward
E[
∑∞
t=0 γ

trt], whereγ ∈ [0, 1) is adiscount factorandrt
is the immediate reward at the time stept. In such a setting,
there always exists anoptimal policyπ∗ which is stationary
and deterministic [19]. The policy is greedy with respect to
theoptimal value functionV ∗, which is a fixed point of the
Bellman equation [1]:

V ∗(x) = max
a

[
R(x, a) + γEP (x′|x,a)[V

∗(x′)]
]
. (3)

Similarly to the above equation, all expectation terms in the
rest of the paper are written compactly asEP (x)[f(x)].

3 Solving factored MDPs

Markov decision processes can be solved by exact dynamic
programming (DP) methods in polynomial time in the size
of their state space [19]. Unfortunately, the space spaceX

of factored MDPs is exponential in the number of state vari-
ables. Therefore, the DP methods are unsuitable for solving
these problems. Since a factored representation of an MDP
does not guarantee a structure in its solution [13], we resort
to value function approximations.

In this work, we focus on thelinear value function approx-
imation[2, 22]:

V w(x) =
∑

i

wifi(x). (4)

The approximation restricts the form of the value function
to the linear combination of basis functionsfi(x), wherew
is a vector of optimized weights. The basis functionsfi(x)
are arbitrary functions, which are usually restricted to small
subsets of state variablesXi [2, 13]. The functions play the
same role as features in machine learning. They are usually
provided by domain experts but can also be discovered au-
tomatically [18, 16].

4 Approximate linear programming

Various techniques for optimizing the linear value function
approximation have been studied and analyzed [3]. We fo-
cus onapproximate linear programming (ALP)[21], which
restates this problem as a linear program:

minimizew
∑

i

wiαi (5)

subject to:
∑

i

wiFi(x, a)−R(x, a) ≥ 0

∀ x ∈ X, a ∈ A;

wherew denotes the variables in the LP,αi is abasis func-
tion relevance weight:

αi = Eψ(x)[fi(x)] , (6)

ψ(x) ≥ 0 is astate relevance density functionthat weights
the quality of the approximation, and:

Fi(x, a) = fi(x)− γEP (x′|x,a)[fi(x
′)] (7)

denotes the difference between the basis functionfi(x) and
its discountedbackprojection. This linear program is feasi-
ble if the set of basis functions includes a constant function
f0(x) ≡ 1. We assume that such a basis function is present.

Since our basis functionsfi(x) are often restricted to small
subsets of state variables, expectation terms in the ALP for-
mulation (5) can be computed efficiently [10]. For instance,
the backprojection terms can be rewritten as:

EP (x′|x,a)[fi(x
′)] = EP (x′

i
|x,a)[fi(x

′
i)] , (8)

whereX′i is a lower dimensional state space corresponding
to the basis functionfi(x), andP (x′i |x, a) is a distribution
defined on this subspace. Similarly, state relevance weights
αi can be computed efficiently if the state relevance density
ψ(x) is structured.

4.1 Solving ALP formulations

The major problem in solving ALP formulations efficiently
is in satisfying their constraints. This problem is hard since
the number of the constraints is exponential in the number
of state variables. Fortunately, the constraints exhibit some
structure. The structure is a result of combining linear value
function approximations (Equation 4) with factored reward
and transition models (Equations 1 and 2). Therefore, ALP

constraints can be satisfied in a structured form and without
being enumerated exhaustively.

Based on these observations, Guestrinet al.[10] proposed a
variable elimination method [9] that rewrites the constraint
space compactly. Schuurmans and Patrascu [20] solved the
constraint satisfaction problem by the cutting plane method
[4]. The approach iteratively searches for the most violated
constraint:

argmin
x,a

[
∑

i

w
(t)
i Fi(x, a)−R(x, a)

]
(9)

with respect to the solutionw(t) of a relaxed ALP. The most
violated constraint is added to the linear program, which is
in turn resolved for a new vectorw(t+1). This procedure is
iterated until no violated constraint is found. In such a case,
the vectorw(t) is an optimal solution to the ALP.

The space complexity of both constraint satisfaction meth-
ods [10, 20] is exponential in the treewidth of the constraint
space. As a result, the methods are unsuitable for problems
with a large treewidth. However, such problems can be still
solved approximately. For instance, de Farias and Van Roy
[7] proposed Monte Carlo approximations of the constraint
space. Kveton and Hauskrecht [14] showed how to search
for the most violated constraint (Equation 9) using Markov
chain Monte Carlo (MCMC) sampling.

4.2 Theoretical analysis

The quality of the ALP formulation has been studied by de
Farias and Van Roy [6]. Based on their work, we conclude
that ALP minimizes theL1-norm error‖V ∗−V w‖1,ψ. The
following theorem draws a parallel between optimizing this
objective and the max-norm error‖V ∗ − V w‖∞.

Theorem 1 (de Farias and Van Roy [6]). Let w̃ be a solu-
tion to the ALP formulation (5). Then the expected error of
the value functionV w̃ can be bounded as:

∥∥∥V ∗ − V w̃
∥∥∥
1,ψ
≤

2

1− γ
min
w

‖V ∗ − V w‖∞ ,

where‖·‖1,ψ is anL1-norm weighted by the state relevance
density functionψ and‖·‖∞ is the max-norm.

De Farias and Van Roy [6] also proved a tighter version of
Theorem 1, which reweights the error‖V ∗ − V w‖∞.

5 Partitioned ALP

In this section, we propose a novel approximate linear pro-
gramming formulation. In comparison to the standard ALP
(5), the proposed formulation has an additional structure in
its constraint space. The structure allows for controllingthe
complexity of solving the new LP.

The LP solves a more restrictive problem than the standard
ALP. As a result, the formulation can be viewed as an inner

Outer polytope
approximation

Feasible
region of
a linear
program

Inner polytope
approximation

w1

w2

Figure 1: An illustration of inner and outer approximations
to the feasible region of a linear program.

approximation to the feasible region of the ALP (Figure 1).
This differentiates our work from existing ALP approxima-
tions [7, 14]. These approximations are based on constraint
sampling. As a result, they approximate the feasible region
of the ALP from outside.

5.1 An illustrative example

First, let us consider an optimization problem:

minimizew,h w1α1 + w2α2 + h (10)

subject to: w1F1(x1) + w2F2(x2) + h ≥ 0

∀ x1 ∈ X1, x2 ∈ X2;

wherew = (w1, w2) denotes the main optimized variables,
andh is an auxiliary variable that guarantees the feasibility
of the LP. This problem involves|X1 ×X2| = |X1|× |X2|
constraints. If the number of the constraints is large, a sub-
optimal but feasible solution to the problem can be obtained
by solving a new linear program:

minimizew,h w1α1 + w2α2 + h (11)

subject to: h1 + h2 = h

w1F1(x1) + h1 ≥ 0 ∀ x1 ∈ X1

w2F2(x2) + h2 ≥ 0 ∀ x2 ∈ X2;

whereh1 andh2 are new auxiliary variables that guarantee
the feasibility of the LP. Note that the new LP decomposes
the original constraintw1F1(x1)+w2F2(x2)+h ≥ 0 into
two smaller constraint spaces with|X1|+ |X2| constraints.
Therefore, it is typically faster to solve the new LP than our
original problem (10). In the next section, we show how to
apply similar ideas in the context of ALP.

5.2 Partitioned ALP formulation

Similarly to Section 5.1, we may decompose the constraint
space in the ALP formulation (5). Formally, thepartitioned

ALP (PALP)formulation withK constraint spaces is given
by a linear program:

minimizew
∑

i

wiαi (12)

subject to: DMw(x, a)
T ≥ 0 ∀ x ∈ X, a ∈ A;

where:

Mw(x, a) = (w1F1(x, a), . . . ,−R1(x1, a), . . .) (13)

is a vector whosei-th element corresponds to thei-th term
in the ALP constraint, and thepartitioning matrix:

D =




d1,1 d1,2 d1,3 · · ·
d2,1 d2,2 d2,3 · · ·
d3,1 d3,2 d3,3 · · ·

...
...

...
. ..


 (14)

determines how the ALP constraint decomposes into theK
new constraint spaces. Specifically, the termdk,i measures
the contribution of thei-th term in the ALP constraint to the
k-th constraint space. Due to this interpretation, we assume
that all termsdk,i are non-negative and that the partitioning
matrixD is normalized such that the equality

∑
k dk,i = 1

holds for alli. Under such assumptions, it is trivial to show
that the satisfaction of theK constraintsDMw(x, a)T ≥ 0
leads to the satisfaction of a corresponding ALP constraint.
The claim can be proved based on the identity:

1DMw(x, a)
T =
∑

i

wiFi(x, a)−R(x, a), (15)

where1 is a row vector of ones. It follows that every PALP
solution is feasible in a corresponding ALP.

Similarly to ALP, the feasibility of the PALP formulation is
guaranteed if the set of basis functions includes a constant
functionf0(x) ≡ 1. We assume that the function is present
in allK constraint spaces. In each of them, we define a new
weightwk0 , which reflects the contribution of this function.
As a result of these changes, the PALP formulation slightly
changes its form:

minimizew
∑

i

wiαi + w0 (16)

subject to:
∑

k

wk0 = w0

DMw(x, a)
T + (1− γ)(w10, . . . , w

K
0)

T ≥ 0

∀ x ∈ X, a ∈ A.

In the rest of the paper, we use the above and original PALP
formulations interchangeably.

5.3 Partitioning matrix

The partitioning matrixD allows for trading off the quality
and complexity of PALP solutions. To achieve high-quality
and tractable approximations, the rows of the matrix should

w1F1(x1, x2, a)

w3F3(x3, x4, a)

w2F2(x2, x3, a)

− R1(x3, a)

w4F4(x1, x4, a)

w5F5(x4, x5, a)

− R2(x5, a)

Figure 2: A graphical representation of a cost network. The
rectangular nodes represent functions, which are defined on
some subset of variables. Two nodes in the cost network are
connected if their functions share at least one variable.

reflect tree decompositions of thecost networkcorrespond-
ing to ALP constraints (Figure 2). The width of the decom-
positions should be small since the complexity of satisfying
a single constraint space is exponential in its treewidth [10].

How to generate the best PALP approximation within a cer-
tain complexity limit is an open question. In the experimen-
tal section, we build the matrixD based on a heuristic. The
heuristic generates a constraint space for every expectation
termFk(x, a) in Equation 9. This constraint space consists
of the termwkFk(x, a) and its cost network neighbors. The
constraint space is not included in the matrixD if its terms
constitute a subset of another constraint space.

This decomposition of our initial problem can be viewed as
optimizingK smaller MDPs, which have overlapping state
and action spaces, and share value functions. To clarify the
construction of the matrixD, we demonstrate it on the cost
network in Figure 2. The cost network involves 7 functions,
out of which 5 have the form ofwkFk(x, a). Therefore, the
corresponding matrixD has 5 rows and 7 columns:

D =




0.33̄ 0.33̄ 0 0.25 0 0 0
0.33̄ 0.33̄ 0.25 0 0 0.5 0
0 0.33̄ 0.25 0.25 0.33̄ 0.5 0
0.33̄ 0 0.25 0.25 0.33̄ 0 0
0 0 0.25 0.25 0.33̄ 0 1


 . (17)

Non-zero entriesdk,i in the matrix indicate that thei-th cost
network term is present in thek-th constraint space.

5.4 Solving PALP formulations

The PALP formulation (12) is similar to the ALP formula-
tion (5). As a result, it can be solved in a similar fashion. In
the experimental section, we implemented the cutting plane
method for solving linear programs (Figure 3). In principle,
any method for solving ALPs (Section 4.1) can be adapted
to PALPs.

Inputs:
a factored MDPM = (X,A, P,R)
basis functionsf0(x), f1(x), f2(x), . . .
initial basis function weightsw(0)

a separation oracleO

Algorithm:
initialize a relaxed PALP formulation
t = 0
while a stopping criterion is not met

for every constraint spacek = 1, . . . ,K
query the oracleO for a violated constraint(xO, aO)
if the constraint(xO, aO) is violated

add the constraint to the relaxed PALP
resolve the LP for a new vectorw(t+1)

t = t+ 1

Outputs:
basis function weightsw(t)

Figure 3: Pseudo-code implementation of the cutting plane
method for solving PALP formulations.

5.5 Theoretical analysis

In this section, we discuss the quality of the PALP formula-
tion (12). First, we prove that its solution is an upper bound
on the optimal value functionV ∗.
Proposition 1. Let w̃ be a solution to the PALP formula-
tion (12). ThenV w̃ ≥ V ∗.

Proof: Sincew̃ is a solution to the PALP formulation (12),
it is also a suboptimal solution to the ALP formulation (5).
Therefore, the constraintV w̃≥T ∗V w̃ is satisfied. Further-
more, note that the Bellman operatorT ∗ is both monotonic
and contracting. Hence, the inequalityV w̃≥T ∗V w̃ yields
the following sequence of inequalities:

V w̃ ≥ T ∗V w̃ ≥ T ∗T ∗V w̃ ≥ · · · ≥ V ∗.

This step concludes our proof.

The above result allows us to restate the objectiveEψ[V w]
in PALP.
Proposition 2. The objective in the PALP formulation (12)
can be rewritten as‖V ∗ − V w‖1,ψ, where‖·‖1,ψ is anL1-
norm weighted by the state relevance density functionψ.

Proof: Follows from the fact that all solutions to the PALP
formulation (12) satisfy the constraintV w≥V ∗.

Based on Proposition 2, we conclude that PALP optimizes
the linear value function approximation with respect to the
reweightedL1-norm error‖V ∗ − V w‖1,ψ. The following
theorem draws a parallel between optimizing this objective
and the max-norm error‖V ∗ − V w‖∞.
Theorem 2. Let w̃ be a solution to the PALP formulation
(12). Then the expected error of the value functionV w̃ can
be bounded as:
∥∥∥V ∗ − V w̃

∥∥∥
1,ψ
≤

2

1− γ
min
w

‖V ∗ − V w‖∞ +
Kδ

1− γ
,

where‖·‖1,ψ is anL1-norm weighted by the state relevance
density functionψ, ‖·‖∞ is the max-norm,δ is a scalar that
reflects how hard is to make an ALP solution feasible in our
PALP formulation, andK denotes the number of constraint
spaces in the PALP.

Proof: Our proof is similar to the proof of Theorem 2 by de
Farias and Van Roy [6]. The vectors̃w,w, andw∗ denote
an optimal solution to the PALP formulation, its suboptimal
solution, and the vector that minimizes the max-norm error
‖V ∗ − V w‖∞, respectively. First, we bound the objective
in the PALP as follows:

∥∥∥V ∗ − V w̃
∥∥∥
1,ψ
≤
∥∥V ∗ − V w

∥∥
1,ψ

≤
∥∥V ∗ − V w

∥∥
∞
.

Second, we bound the max-norm error ofV w by the trian-
gle inequality:

∥∥V ∗ − V w
∥∥
∞
≤
∥∥∥V ∗ − V ŵ

∥∥∥
∞
+
∥∥∥V ŵ − V w

∥∥∥
∞
,

whereŵ is an arbitrary solution to the ALP formulation. In
the rest of the proof, we bound the two terms on the right-
hand side of the inequality. The first term reflects how hard
is to fit the linear value function approximation to the value
functionV ∗. If the vectorŵ is set such that:

ŵ = w∗ +
1 + γ

1− γ

∥∥∥V ∗ − V w
∗

∥∥∥
∞
i0,

wherei0=(1, 0, . . . , 0) is an indicator of the constant basis
functionf0(x) ≡ 1, the following inequality:

∥∥∥V ∗ − V ŵ
∥∥∥
∞
≤

2

1− γ

∥∥∥V ∗ − V w
∗

∥∥∥
∞

holds [6]. The second term reflects how hard it to make the
ALP solutionŵ feasible in the PALP. If the vectorw is set
such that:

w = ŵ +
Kδ

1− γ
i0,

wherei0=(1, 0, . . . , 0) is an indicator of the constant basis
functionf0(x)≡1, δ = −minx,amin(DMŵ(x, a)T), and
the functionmin(DM

ŵ
(x, a)T) computes the minimum of

the vectorDM
ŵ
(x, a)T, we can guarantee the feasibility of

w. The proof is based on the observation that all constraints
in the feasible PALP formulation (16) are satisfied when the
weightswk0 are set such that:

wk0 =
1

K
ŵ0 +

δ

1− γ
.

Based on this setting, the max-norm error betweenV ŵ and
V w is bounded as:

∥∥∥V ŵ − V w
∥∥∥
∞
≤

Kδ

1− γ
.

W2

W1

S

W3

W5

W4 W6

W3 W4

W5

S

W2 W1

W7 W8

W9

W11

W10 S

W7 W8

W11

W6

W3 W2

W14 W13

W10

W5

W9

W12 W15

W1 W4

(a) (b) (c)

Figure 4: An illustration of three network administration topologies:a. 6-ring,b. 12-ring-of-rings, andc. 4× 4 grid. The
gray and white nodes represent the server and workstations,respectively. The computers are connected along the arrows.

6 12 18 24 30

0.7

0.8

0.9

1

Ring topology

R
ew

ar
d

re
la

tiv
e

to
 A

LP
 p

ol
ic

ie
s

6 12 18 24 30

0.7

0.8

0.9

1

Ring−of−rings topology

2x2 4x4 6x6 8x8 10x10

0.7

0.8

0.9

1

Grid topology

6 12 18 24 30
0

10

20

30

Problem size n

C
om

pu
ta

tio
n

tim
e

[s
]

6 12 18 24 30
0

10

20

30

Problem size n
2x2 4x4 6x6 8x8 10x10
0

10

20

30

Problem size nxn

Figure 5: Comparison of four policies for solving the network administration problem. The first policy is obtained by PALP
(black lines), the second one by ALP (dark gray lines), the third one by ALP with randomly sampled constraints (light gray
lines), and the fourth policy is the server heuristic (dark gray lines with circles). The policies are compared by their reward,
which is measured relatively to the reward of ALP policies, and computation time (in seconds). The variance in the rewards
of sampled ALP approximations is depicted by gray areas. Allresults are reported as functions of increasing problem sizes
(n).

This step concludes our proof.

The above result can be interpreted as follows. PALP yields
a close approximationV w̃ to the optimal value functionV ∗

if the functionV ∗ lies in the span of basis functions and the
penaltyδ for partitioning the ALP constraint space is small.
Unfortunately, we do not have a good bound for the penalty
termδ. The value ofδ can be as bad as‖ŵ‖1+Rmax, where
Rmax denotes the maximum immediate reward in an MDP.
Hence, the bound in Theorem 2 is not very tight in practice.
Nevertheless, it provides valuable insights into two sources
of errors for PALP approximations.

6 Experiments

The objective of the experimental section is to demonstrate
the quality and scale-up potential of PALP approximations.

The approximations are studied with respect to ALP, which
is a state-of-the-art approach to solving large-scale factored
MDPs. Our experiments are performed on various forms of
the network administration problem [10]. This is a standard
benchmark for testing the scalability of MDP algorithms.

6.1 Experimental setup

The network administration problem involves a network of
randomly crashing computers. When a computer crashes, it
increases the probability of its network neighbors crashing.
The objective is to reboot crashed computers to restore their
functionality and prevent further spreading of their failures
into the network. Examples of three network topologies are
shown in Figure 4. Each network consists of one server and
several workstations. The difference between the two types
of the computers is in the reward for keeping them running.

0 10 20 30 40 50
5

6

7

8

Basis function index i

A
LP

 w
ei

gh
ts

 w
i

0 10 20 30 40 50
0.8

1

1.2

1.4

P
A

LP
 w

ei
gh

ts
 w

i

Figure 6: Basis function weightswi obtained by ALP (dark
gray line) and PALP (black line) on the7× 7 grid network
administration problem.

The immediate reward for keeping a workstation running is
1. The reward for keeping the server running is 2.

The network administration problem is a challenging MDP
due to the size of its state space. Specifically, since the state
of the network is a product of individual computer states, it
is exponential in the number of computers. Therefore, only
small instances of the problem can be solved exactly. In the
rest of the section, we focus on large-scale problems and try
to solve them through linear value function approximations
(Equation 4). In all experiments, we define a basis function
fi(x)=xi for every computerXi. Furthermore, in the ring
and ring-of-rings topologies (Figures 4a and 4b), we assign
a pairwise basis functionfi→j(x) = xixj to every network
connectionXi→Xj .

Our linear value function approximations are optimized us-
ing ALP and PALP formulations. The cutting plane method
is employed to solve these LPs exactly and efficiently (Fig-
ure 3). In addition, we experiment with ALP formulations,
which are solved approximately by Monte Carlo constraint
sampling [7]. The number of sampled constraints is100n,
wheren is the number of state variablesX. Therefore, it is
proportional to the size of solved problems. To demonstrate
the non-triviality of learned policies, we also report results
of a heuristic for solving our problem. The heuristic places
the administrator at the server so the computer is protected
from crashing.

6.2 Experimental results

Our main experimental results are summarized in Figure 5.
Based on these results, we conclude that PALP policies are
almost as good as ALP policies. Specifically, note that the
rewards of the policies are within 95 percent of our baseline
in all experiments. Unfortunately, these good results cannot
be explained by Theorem 2 because our bound is too loose.
To explain our results, we tried to investigate the similarity
of basis function weightsw obtained by ALP and PALP. As
illustrated in Figure 6, the magnitudes of the weights can be
very different. However, the weights exhibit similar trends.
In turn, value function approximations corresponding to the
weights must have similar shapes, and their greedy policies

10 20 30 40 50 60 70 80 90

10

20

30
30−ring topology

R
ow

 in
de

x
k

10 20 30 40 50 60 70 80 90 100

10

20
30−ring−of−rings topology

R
ow

 in
de

x
k

25 50 75 100 125 150 175 200

20

40

60

80

10x10 grid topology

Column index i

R
ow

 in
de

x
k

Figure 7: Three partitioning matricesD corresponding to
the network administration problem. The brighter the color
of a pixel, the higher the value of the partitioning coefficient
dk,i. Black pixels represent zero coefficients.

are similar as a result.

Figure 5 also suggests that PALP policies can be computed
significantly faster than ALP policies. This speedup results
from working with sparse decompositions (Figure 7) of the
original constraint space rather than the space itself. More-
over, note that the treewidth of then× n network adminis-
tration problem (Figure 4c) isn. Therefore, the complexity
of learning ALP policies for this problem is naturally expo-
nential inn. On the other hand, the complexity of learning
PALP policies is polynomial inn. This claim follows from
the observation that the number of PALP constraint spaces
isn2 and their treewidth is not dependent onn. As a result,
PALP on the grid network provides an exponential speedup
over ALP. This result can be verified by the analysis of the
computation time trends in Figure 5.

Finally, Figure 5 illustrates that PALP policies are superior
to ALP policies, which are obtained by ALP with randomly
sampled constraints. In most cases, the PALP policies yield
significantly higher rewards than the average sampled ALP
approximation. For all larger network administration prob-
lems, the policies are as good or better than the best of these

approximations. At the same time, the computation time of
the PALP policies is shorter or comparable to the computa-
tion time of the sampled approximations.

7 Conclusions

Development of scalable algorithms for solving real-world
MDPs is a challenging task. In this work, we investigated a
novel approach to approximate linear programming. Com-
paring to the standard ALP formulation, we decompose the
constraint space into a set of low-dimensional spaces. This
structure allows for solving the new LP more efficiently. In
particular, its constraints can be satisfied in a compact form
without an exponential dependence on the treewidth of the
original constraint space. Our experiments demonstrate the
superiority of the new approach when compared to existing
exact and approximate solutions to ALP.

Results of this paper can be extended in several ways. First,
we have not addressed the topic of learning good partition-
ing matricesD. This topic is in many aspects similar to the
problem of efficient inference in Bayesian networks. In this
context, Meila [17] proposed using a mixture of trees to ap-
proximate an arbitrary joint probability distribution defined
by a Bayesian network. Second, the bound in Theorem 2 is
definitely loose in practice. How to make this bound tight is
an interesting open question. Finally, PALP and its benefits
should be studied on a more realistic problem than the one
presented in the experimental section.

Acknowledgment

We thank anonymous reviewers for helpful comments that
led to the improvement of this paper. We also thank Carlos
Guestrin for encouragement and positioning this paper in a
broader context.

References

[1] Richard Bellman.Dynamic Programming. Princeton Uni-
versity Press, Princeton, NJ, 1957.

[2] Richard Bellman, Robert Kalaba, and Bella Kotkin. Poly-
nomial approximation – a new computational technique in
dynamic programming: Allocation processes.Mathematics
of Computation, 17(82):155–161, 1963.

[3] Dimitri Bertsekas and John Tsitsiklis.Neuro-Dynamic Pro-
gramming. Athena Scientific, Belmont, MA, 1996.

[4] Dimitris Bertsimas and John Tsitsiklis.Introduction to Lin-
ear Optimization. Athena Scientific, Belmont, MA, 1997.

[5] Craig Boutilier, Richard Dearden, and Moisés Goldszmidt.
Exploiting structure in policy construction. InProceedings
of the 14th International Joint Conference on Artificial In-
telligence, pages 1104–1111, 1995.

[6] Daniela Pucci de Farias and Benjamin Van Roy. The linear
programming approach to approximate dynamic program-
ming. Operations Research, 51(6):850–856, 2003.

[7] Daniela Pucci de Farias and Benjamin Van Roy. On con-
straint sampling for the linear programming approach to ap-
proximate dynamic programming.Mathematics of Opera-
tions Research, 29(3):462–478, 2004.

[8] Thomas Dean and Keiji Kanazawa. A model for reason-
ing about persistence and causation.Computational Intelli-
gence, 5:142–150, 1989.

[9] Rina Dechter. Bucket elimination: A unifying framework
for probabilistic inference. InProceedings of the 12th Con-
ference on Uncertainty in Artificial Intelligence, pages 211–
219, 1996.

[10] Carlos Guestrin, Daphne Koller, and Ronald Parr. Max-
norm projections for factored MDPs. InProceedings of
the 17th International Joint Conference on Artificial Intel-
ligence, pages 673–682, 2001.

[11] Carlos Guestrin, Daphne Koller, and Ronald Parr. Multi-
agent planning with factored MDPs. InAdvances in Neu-
ral Information Processing Systems 14, pages 1523–1530,
2002.

[12] Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha
Venkataraman. Efficient solution algorithms for factored
MDPs. Journal of Artificial Intelligence Research, 19:399–
468, 2003.

[13] Daphne Koller and Ronald Parr. Computing factored value
functions for policies in structured MDPs. InProceedings
of the 16th International Joint Conference on Artificial In-
telligence, pages 1332–1339, 1999.

[14] Branislav Kveton and Milos Hauskrecht. An MCMC ap-
proach to solving hybrid factored MDPs. InProceedings of
the 19th International Joint Conference on Artificial Intelli-
gence, pages 1346–1351, 2005.

[15] Branislav Kveton, Milos Hauskrecht, and Carlos Guestrin.
Solving factored MDPs with hybrid state and action vari-
ables. Journal of Artificial Intelligence Research, 27:153–
201, 2006.

[16] Sridhar Mahadevan. Samuel meets Amarel: Automating
value function approximation using global state space anal-
ysis. In Proceedings of the 20th National Conference on
Artificial Intelligence, pages 1000–1005, 2005.

[17] Marina Meila.Learning with Mixtures of Trees. PhD thesis,
Massachusetts Institute of Technology, 1999.

[18] Relu Patrascu, Pascal Poupart, Dale Schuurmans, Craig
Boutilier, and Carlos Guestrin. Greedy linear value-
approximation for factored Markov decision processes. In
Proceedings of the 18th National Conference on Artificial
Intelligence, pages 285–291, 2002.

[19] Martin Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
New York, NY, 1994.

[20] Dale Schuurmans and Relu Patrascu. Direct value-
approximation for factored MDPs. InAdvances in Neu-
ral Information Processing Systems 14, pages 1579–1586,
2002.

[21] Paul Schweitzer and Abraham Seidmann. Generalized
polynomial approximations in Markovian decision pro-
cesses.Journal of Mathematical Analysis and Applications,
110:568–582, 1985.

[22] Benjamin Van Roy.Planning Under Uncertainty in Com-
plex Structured Environments. PhD thesis, Massachusetts
Institute of Technology, 1998.

