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Abstract

Approximate linear programming (ALP) is an ef-
ficient approach to solving large factored Markov
decision processes (MDPs). The main idea of the
method is to approximate the optimal value func-
tion by a set of basis functions and optimize their
weights by linear programming (LP). This paper
proposes a new ALP approximation. Comparing
to the standard ALP formulation, we decompose
the constraint space into a set of low-dimensional
spaces. This structure allows for solving the new
LP efficiently. In particular, the constraints of the
LP can be satisfied in a compact form without an
exponential dependence on the treewidth of ALP
constraints. We study both practical and theoret-
ical aspects of the proposed approach. Moreover,
we demonstrate its scale-up potential on an MDP
with more thar!% states.
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represents the constraint space in ALP. Therefore, when the
treewidth of an ALP is large, its exact solution is infeasibl
This type of problems can be still solved approximately us-
ing Monte Carlo constraint sampling [7, 14]. This approach
can be interpreted as an outer approximation to the feasible
region of the ALP.

In this work, we propose inner approximations to the feasi-
ble region. In comparison to the standard ALP formulation,
the constraint space is factored into a set of subspaces. Thi
structure allows for solving the new LP more efficiently. In
particular, its constraints can be satisfied in a compaaot for
without an exponential dependence on the treewidth of the
original constraint space. We investigate both practindl a
theoretical aspects of the approach. In addition, we demon-
strate that the approach yields an exponential speedup over
ALP.

The paper is organized as follows. First, we review factored
MDPs [5] and linear value function approximations [2, 22].
Second, we discuss in detail existing work on approximate
linear programming. Third, we propose a novel partitioned
ALP formulation and study its properties. Finally, we eval-
uate the quality of the approximation on decision problems
219 states.

framework for solving sequential decision problems under
uncertainty. Unfortunately, traditional methods forsoty 2 Factored M DPs

MDPs, such as value and policy iteration, are unsuitable for
solving real-world problems. These problems are generall
structured, and their state and action spaces are repeesen
by state and action variables. The size of these problems
naturally exponential in the number of the variables, and s
are their exact solutions. Approximate linear programmingA factored MDP[5] is a 4-tupleM = (X, A, P, R), where
(ALP) [21] has emerged as a promising approach to solvingk = { X7, ..., X,,} is a state space represented by a set of
these problems efficiently [6, 12, 15]. state variablesd = {a1,...,a,,} is afinite set of actiorls
aIP(X’ | X, A) is a transition function, which represents the
rdynamics of the MDP, ang is a reward function assigning
immediate payoffs to state-action configurations. Theestat
gf the system is completely observed and given by a vector
f value assignments = (z1,...,z,).

any real-world decision problems are naturally described
jpa factored form. Factored MDPs [5] allow for a compact
6epresentation of this structure.

The main idea of this method is to approximate the optim
value function by a set of basis functions and optimize thei
weights by linear programming (LP). The optimization can
be performed in a structured manner [10, 20]. The structur
is a result of combining the structure of factored MDPs and’

linear value function approximations. [
) . . For simplicity of exposition, we consider an MDP model with
The complexity of computing exact ALP solutions [10, 20] 3 single action variablel. Our ideas straightforwardly generalize
is exponential in the treewidth of the dependency graph thatb MDPs with factored action spaces [11].



Transition model: The transition model is represented by The approximation restricts the form of the value function
a conditional probability distributio® (X’ | X, .A), where  to the linear combination of basis functiofi$x), wherew

X andX’ denote the state variables at two successive timés a vector of optimized weights. The basis functigh)
steps. Since the full tabular representatio®¢X’ | X, .A) are arbitrary functions, which are usually restricted t@bm

is infeasible when the number of state variables is large, wsubsets of state variabl&s [2, 13]. The functions play the
assume that the distribution factors ald¥gas: same role as features in machine learning. They are usually
provided by domain experts but can also be discovered au-
tomatically [18, 16].

PX' | X.0) = [[ P(X! | Par(XD)a) ()
=1

and is described compactly bylgnamic Bayesian network 4 Approximatelinear programming

(DBN)[8]. The network reflects independencies among th
variablesX andX’ given an actioru. One-step dynamics
of every state variable is given by its conditional probiail
distributionP(X/ | Par(X}), a), wherePar(X/) CX is the
parent set ofX/. The parent set is usually a small subset of

rsT:zcal)Ejee\llanables which simplifies the parameterization ef th o — Z Wi ®)

Sarious techniques for optimizing the linear value funatio
approximation have been studied and analyzed [3]. We fo-
cus onapproximate linear programming (ALP21], which
restates this problem as a linear program:

Reward model: The reward model is factored similarly to ; . . _ >
the transition model. Specifically, the reward function: subject to: ;w”FZ(X’ a) ~ R(x,a) 2 0

R(x,a) = > Rj(x;,a) ) VxeX,ac A
g wherew denotes the variables in the L&), is abasis func-

is an additive function of local reward functions defined ontion relevance weight
the subsetX; and.A. These local functions are compactly _E 6
represented by reward nod&s, which are conditioned on a; = By fi()] ®)

their parent setBar(R;) = X; U A. ¥(x) > 0 is astate relevance density functitmat weights
Optimal value function and policy: The quality of a pol- the quality of the approximation, and:

icy 7 is measured by th@finite horizon discounted reward ,

E[>7°, v'r:], wherey € [0,1) is adiscount factorandr; Fi(x,a) = fi(x) = YEp(xix,0) [fi(x')] 7
is the immediate reward at the time stepn such a setting,
there always exists aptimal policyn* which is stationary
and deterministic [19]. The policy is greedy with respect to
theoptimal value functior*, which is a fixed point of the
Bellman equation [1]:

denotes the difference between the basis functjtx) and

its discountedackprojection This linear program is feasi-
ble if the set of basis functions includes a constant functio
fo(x) = 1. We assume that such a basis function is present.

. . Since our basis functiong(x) are often restricted to small
Vi(x) = max [R(x,a) + YEp@jxa) [V ()] . () subsets of state variables, expectation terms in the ALP for

o ] ) ) mulation (5) can be computed efficiently [10]. For instance,
Similarly to the above equation, all expectation terms & th the packprojection terms can be rewritten as:

rest of the paper are written compactlyls ) [ f (x)].
Ep(xrjx,a) [fi(X)] = Ep(x!x,0) [fi (X7)] 5 (8)

whereX’ is a lower dimensional state space corresponding
fo the basis functiorf; (x), andP(x} | x, a) is a distribution
Yefined on this subspace. Similarly, state relevance weight

programming (DP) methods in polynomial time in the size - . .
: a; can be computed efficiently if the state relevance density
of their state space [19]. Unfortunately, the space space (x) is structured.

of factored MDPs is exponential in the number of state vari-
ables. Therefore, the DP methods are unsuitable for solvin ) )
these problems. Since a factored representation of an MDg1 Solving AL P formulations
does not guarantee a structure in its solution [13], we teso
to value function approximations.

3 Solving factored MDPs

Markov decision processes can be solved by exact dynam

r'I'he major problem in solving ALP formulations efficiently
is in satisfying their constraints. This problem is harcsin
In this work, we focus on thknear value function approx- the number of the constraints is exponential in the number
imation[2, 22]: of state variables. Fortunately, the constraints exhiites
structure. The structure is a result of combining lineavgal
VV(x) = Z w; f3(x). (4)  function approximations (Equation 4) with factored reward
i and transition models (Equations 1 and 2). Therefore, ALP



constraints can be satisfied in a structured form and without y

W
being enumerated exhaustively. "

Based on these observations, Guestial.[10] proposed a Outer polytope
variable elimination method [9] that rewrites the consitrai approximation
space compactly. Schuurmans and Patrascu [20] solved the
constraint satisfaction problem by the cutting plane metho
[4]. The approach iteratively searches for the most violate

it Inner polytope
constraint: approximation
arg min Z wgt)Fi(x, a) — R(x,a) 9) Feasible
x,a - region of
¢ a linear
program

Wy
with respect to the solutiow ) of a relaxed ALP. The most >
violated constraint is added to the linear program, which is
in turn resolved for a new vectev(**1). This procedure is
iterated until no violated constraint is found. In such aegas Figure 1: An illustration of inner and outer approximations

the vectorw® is an optimal solution to the ALP. to the feasible region of a linear program.

The space complexity of both constraint satisfaction meth-

ods [10, 20] is exponential in the treewidth of the constrain approximation to the feasible region of the ALP (Figure 1).
space. As a result, the methods are unsuitable for problemgs differentiates our work from existing ALP approxima-
with a large treewidth. However, such problems can be stiltions [7, 14]. These approximations are based on constraint

solved approximately. For instance, de Farias and Van Ro¥ampling. As a result, they approximate the feasible region
[7] proposed Monte Carlo approximations of the constrainigf the ALP from outside.

space. Kveton and Hauskrecht [14] showed how to search
for the most violated constraint (Equation 9) using Markov

chain Monte Carlo (MCMC) sampling. 51 Anillustrative example

First, let us consider an optimization problem:
4.2 Theoretical analysis
o ity of th . I has b died by d minimizey, , wioq + waas + h (20)
The quality of the ALP formulation has been studied by de ; .
Farias and Van Roy [6]. Based on their work, we conclude subject to: wi Fy (1) + wpFo(we) +h = 0
that ALP minimizes the, -norm errot| V* —V™||, ,. The V1 € X1, 22 € X5
following theorem draws a parallel between optimizing this

objective and the max-norm errgy’ — V. wherew = (w, wo) denotes the main optimized variables,

andh is an auxiliary variable that guarantees the feasibility
Theorem 1 (de Farias and Van Roy [6]).etw be a solu-  of the LP. This problem involvelst; x X»| = |X;| x | Xs|
tion to the ALP formulation (5). Then the expected error ofconstraints. If the number of the constraints is large, a sub
the value functio’™ can be bounded as: optimal but feasible solution to the problem can be obtained
9 by solving a new linear program:

|ve v < Emin vV o

1,9 1- vow minimizey ;, wiog + weag + h (11)

where]|-[|, ,, is anL;-norm weighted by the state relevance subjectto: hy +hy=h
density functions and||-|| _ is the max-norm. wiFi(z1) +h1 20 Va € Xy

. . ) w2F2(l'2)+h2 >0 Vaxgo e Xo;
De Farias and Van Roy [6] also proved a tighter version of

Theorem 1, which reweights the erfgh™ — V|| .. whereh; andh; are new auxiliary variables that guarantee
the feasibility of the LP. Note that the new LP decomposes
5 Partitioned ALP the original constrainty; Fy (x1) + wa Fa(x2) + h > 0into

two smaller constraint spaces wijtki; | + | X | constraints.
. : : : Therefore, itis typically faster to solve the new LP than our
In this section, we propose a novel approximate linear pro

gramming formulation. In comparison to the standard ALP'originaI problem (10). In the next section, we show how to
C " . apply similar ideas in the context of ALP.

(5), the proposed formulation has an additional structure i PRl

its constraint space. The structure allows for controlthne

complexity of solving the new LP. 5.2 Partitioned AL P formulation

The LP solves a more restrictive problem than the standar&imilarly to Section 5.1, we may decompose the constraint
ALP. As aresult, the formulation can be viewed as an innesspace in the ALP formulation (5). Formally, tpartitioned



ALP (PALP)formulation with K’ constraint spaces is given
by a linear program:

Wze(Xzy X3, a)

minimize,, > wio; (12)

W1F1(X1, X2, a)

subjectto: DMy (x,a)" >0 Vx e X,a € A;

W3F3(X3, Xa, &)

where:

My (x,a) = (w1 Fi(x,a),...,—Ri(x1,a),...) (13)

WaFa(X1, Xa, @)

is a vector whoseé-th element corresponds to th¢h term

in the ALP constraint, and thgartitioning matrix
WsFs(X4, Xs, @)

d1,1 d1,2 d1,3
b dai dao daz - 4
| dsr ds2 dss - (14) Figure 2: A graphical representation of a cost network. The
: : : : rectangular nodes represent functions, which are defined on
some subset of variables. Two nodes in the cost network are
determines how the ALP constraint decomposes intddéhe connected if their functions share at least one variable.
new constraint spaces. Specifically, the telim measures

the contribution of thé-th term in the ALP constraint to the reflect tree decompositions of thest networkcorrespond-
k-th constraint space. Due to this interpretation, we assume P P

that all termsi;, ; are non-negative and that the partitioning Ing FQ ALP constraints (F'gl.”e 2). The width .Of the de.COT”'
matrix D is normalized such that the equallty, di; = 1 positions ShOUId. be small_smce the cqmplexﬂy of satlsjym
holds for alli. Under such assumptions, it is trivial to show asingle constraint space is exponential in its treewidth. [1

that the satisfaction of th& constraintdM,, (x,a)" > 0  How to generate the best PALP approximation within a cer-
leads to the satisfaction of a corresponding ALP constrainttain complexity limitis an open question. In the experimen-
The claim can be proved based on the identity: tal section, we build the matri® based on a heuristic. The
heuristic generates a constraint space for every expeatati
1DM,, (x,a)" = Z w;Fi(x,a) — R(x,a), (15) termFj(x,a) in Equation 9. This constraint space consists
i of the termwy, F,(x, a) and its cost network neighbors. The
constraint space is not included in the maldxf its terms

wherel is a row vector of ones. It follows that every PALP constitute a subset of another constraint space.

solution is feasible in a corresponding ALP.
- - .. This decomposition of our initial problem can be viewed as
Similarly to ALP, the feaS|b|I|.ty of th? PALP formulation is optimizing K smaller MDPs, which have overlapping state
guaranteed if the set of basis functions includes a constant- 4 - ~tion spaces, and share value functions. To clarify the
function fo(x) = 1. We assume that the function is present ., struction of the matrilD, we demonstrate it on the cost

inall K c’?nstr_amt spaces. In each of them, we define anew ok in Figure 2. The cost network involves 7 functions,
weightwg, which reflects the contribution of this function. | '« s¢\vhich 5 have the form ab. F: (x,a). Therefore, the
As a result of these changes, the PALP formulation S"ghtlycorresponding matriD has 5 ro]i/vskan’d 7' columns: '
changes its form: :

033033 0 025 0 0 0

minimize, Y wiay; + wo (16) 033033025 0 0 050
i D= 0 0.33 025025033050 |. a7
subjectto: 3w = 033 0 0.250.25 033 0 0
. 0 0 025025033 0 1
DMy (x,a)" + (1 = y)(wg,...,wy)" >0  Non-zero entried, ; in the matrix indicate that thieth cost
VxeX,ac A network term is present in theth constraint space.

In the rest of the paper, we use the above and original PALB 4 solving PAL P for mulations
formulations interchangeably.
The PALP formulation (12) is similar to the ALP formula-
5.3 Partitioning matrix tion (5). As aresult, it can be solved in a similar fashion. In
the experimental section, we implemented the cutting plane
The partitioning matribXD allows for trading off the quality method for solving linear programs (Figure 3). In principle
and complexity of PALP solutions. To achieve high-quality any method for solving ALPs (Section 4.1) can be adapted
and tractable approximations, the rows of the matrix shouldo PALPs.



wherel|-|, ,, is anL;-norm weighted by the state relevance

Inguf?(:tored MDPM = (X, A, P, R) density functiony, ||-|| is the max-normyj is a scalar that
basis functionso (x), f1(x), f2(x), - .. reflects how hard is to make an ALP solution feasible in our
initial basis function weightsv(®) PALP formulation, and{ denotes the number of constraint
a separation oracl@ spaces in the PALP.

AI?r?i;ilélri];né & relaxed PALP formulation Proof: Our proofis similar to the proof of Theorem 2 by de
t=0 Farias and Van Roy [6]. The vectows, w, andw™* denote
while a stopping criterion is not met an optimal solution to the PALP formulation, its suboptimal

for every constraintspade=1,..., K solution, and the vector that minimizes the max-norm error
query the oracle for a violated constraintxo, ao) |V* — V™|, respectively. First, we bound the objective

if the constraini{xop, ao) is violated
add the constraint to the relaxed PALP

resolve the LP for a new vectev+1) . .
t=t+1 HV v le

Outputs:
basis function weightss(*)

in the PALP as follows:

IN

Ve =v,,

IN

V=V

Second, we bound the max-norm erroflof by the trian-

. . . . le inequality:
Figure 3: Pseudo-code implementation of the cutting plang q y

method for solving PALP formulations. [V =v¥|, < HV* - VVAVH + HVVAV - VWH '

55 Theoretical analysis wherew is an arbitrary solution to the ALP formulation. In
the rest of the proof, we bound the two terms on the right-
hand side of the inequality. The first term reflects how hard
is to fit the linear value function approximation to the value
functionV*. If the vectorw is set such that:

In this section, we discuss the quality of the PALP formula-
tion (12). First, we prove that its solution is an upper bound
on the optimal value functiol*.

Proposition 1. Letw be a solution to the PALP formula-
tion (12). TherV¥% > vV*. G —w i 1+7 HV v H o,
- [e 9]
Proof: Sincew is a solution to the PALP formulation (12), K
it is also a suboptimal solution to the ALP formulation (5). whereip=(1,0, ..., 0) is an indicator of the constant basis
Therefore, the constraif™ >7*V¥ is satisfied. Further- function fo(x) = 1, the following inequality:
more, note that the Bellman operafot is both monotonic

and contracting. Hence, the inequality* > 7*V¥ yields HV* _ V@H < 2 HV* _yw
the following sequence of inequalities: o 1—v oo
VV > T VY > T*T*VY > ... > V*, holds [6]. The second term reflects how hard it to make the
ALP solutionw feasible in the PALP. If the vectaF is set

This step concludes our proad. such that:

The above result allows us to restate the objediyél "]

in PALP. -
Proposition 2. The objective in the PALP formulation (12)

can be rewritten agV™ — V|, ,, where||||, ,isanLi-  whereiy=(1,0,...,0) is an indicator of the constant basis
norm weighted by the state relevance density funafion  fynction f,(x)=1, § = — miny , min(DMg(x, a)"), and

the functionmin(DMg (x, a)") computes the minimum of
the vectodDMg; (x,a)", we can guarantee the feasibility of
w. The proof is based on the observation that all constraints
Based on Proposition 2, we conclude that PALP optimizesn the feasible PALP formulation (16) are satisfied when the
the linear value function approximation with respect to theweightsw?; are set such that:

reweightedC;-norm error||V* — V||, . The following

theorem draws a parallel between optimizing this objective ok = i% i g

and the max-norm errdiv* — V¥|| . T K 1—~

Theorem 2. Letw be a solution to the PALP formulation

(12). Then the expected error of the value functiofican ~ Based on this setting, the max-norm error betwi&hand
be bounded as: V¥ is bounded as:

. 2 Ko o - Ko
vl = 2V oo vl = 2,
L 177 w < 177 0o 17’}/

Proof: Follows from the fact that all solutions to the PALP
formulation (12) satisfy the constraibt” >V*. m
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Figure 4: An illustration of three network administrati@pblogies:a. 6-ring,b. 12-ring-of-rings, and. 4 x 4 grid. The
gray and white nodes represent the server and workstatespectively. The computers are connected along the arrows
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Figure 5: Comparison of four policies for solving the netlwvadministration problem. The first policy is obtained by FFAL
(black lines), the second one by ALP (dark gray lines), tliveltbne by ALP with randomly sampled constraints (light gray
lines), and the fourth policy is the server heuristic (daiydines with circles). The policies are compared by theivard,
which is measured relatively to the reward of ALP policies] aomputation time (in seconds). The variance in the resvard
of sampled ALP approximations is depicted by gray areasteslliits are reported as functions of increasing problegssiz

This step concludes our proad. The approximations are studied with respect to ALP, which
is a state-of-the-art approach to solving large-scal®fadt
WMDPs. Our experiments are performed on various forms of
the network administration problem [10]. This is a standard
benchmark for testing the scalability of MDP algorithms.

The above result can be interpreted as follows. PALP yield
a close approximatiol ™ to the optimal value functio’™

if the functionV* lies in the span of basis functions and the
penaltys for partitioning the ALP constraint space is small.
Unfortunately, we do not have a good bound for the penalty

termé. The value ob can be as bad di$v||, +Rmax, Where 61 Experimental setup
R.,.x denotes the maximum immediate reward in an MDP.

Hence, the bound in Theorem 2 is not very tight in practice The network administration problem involves a network of
Nevertheless, it provides valuable insights into two sesirc randomly crashing computers. When a computer crashes, it
of errors for PALP approximations. increases the probability of its network neighbors craghin
The objective is to reboot crashed computers to restore thei
functionality and prevent further spreading of their fedlsi

into the network. Examples of three network topologies are
shown in Figure 4. Each network consists of one server and
The objective of the experimental section is to demonstratseveral workstations. The difference between the two types
the quality and scale-up potential of PALP approximations.of the computers is in the reward for keeping them running.

6 Experiments
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10x10 grid topology

The immediate reward for keeping a workstation running is

1. The reward for keeping the server running is 2. 80

The network administration problem is a challenging MDP
due to the size of its state space. Specifically, since the sta
of the network is a product of individual computer states, it
is exponential in the number of computers. Therefore, only
small instances of the problem can be solved exactly. In the
rest of the section, we focus on large-scale problems andtr 20
to solve them through linear value function approximations v
(Equation 4). In all experiments, we define a basis function 25 50 75 100 125 150 175 200
fi(x) ==z, for every computeX ;. Furthermore, in the ring Column index i

and ring-of-rings topologies (Figures 4a and 4b), we assigr

a pairwise basis functiofi_, ;(x) = z;z; to every network
connectionX; — X;.

60

40

Row index k

Figure 7: Three partitioning matricd3 corresponding to
Our linear value function approximations are optimized us-the network administration problem. The brighter the color
ing ALP and PALP formulations. The cutting plane method of a pixel, the higher the value of the partitioning coeffitie

is employed to solve these LPs exactly and efficiently (Fig-dx.:- Black pixels represent zero coefficients.

ure 3). In addition, we experiment with ALP formulations,
which are solved approximately by Monte Carlo constraint
sampling [7]. The number of sampled constraint$(i8n,
wheren is the number of state variabl& Therefore, itis
proportional to the size of solved problems. To demonstratéigure 5 also suggests that PALP policies can be computed
the non-triviality of learned policies, we also report iesu  significantly faster than ALP policies. This speedup result
of a heuristic for solving our problem. The heuristic placesfrom working with sparse decompositions (Figure 7) of the
the administrator at the server so the computer is protectedriginal constraint space rather than the space itself.eMor
from crashing. over, note that the treewidth of thex n network adminis-
tration problem (Figure 4c) is. Therefore, the complexity

of learning ALP policies for this problem is naturally expo-
nential inn. On the other hand, the complexity of learning
PALP policies is polynomial im. This claim follows from

Our main experimental results are summarized in Figure 5lfhe observation that the number of PALP constraint spaces

Based on these results, we conclude that PALP policies are 2 and their treewidth is not dependentonAs a result,

almost as good as ALP policies. Specifically, note that th . : i
rewards of the policies are within 95 percent of our baselingaALP on the grid network provides an exponential speedup

. . over ALP. This result can be verified by the analysis of the
in all experiments. Unfortunately, these good results oann L -

: . computation time trends in Figure 5.
be explained by Theorem 2 because our bound is too loose.
To explain our results, we tried to investigate the simiyari Finally, Figure 5 illustrates that PALP policies are superi
of basis function weights, obtained by ALP and PALP. As to ALP policies, which are obtained by ALP with randomly
illustrated in Figure 6, the magnitudes of the weights can besampled constraints. In most cases, the PALP policies yield
very different. However, the weights exhibit similar trend  significantly higher rewards than the average sampled ALP
In turn, value function approximations corresponding ® th approximation. For all larger network administration prob
weights must have similar shapes, and their greedy policieems, the policies are as good or better than the best of these

are similar as a result.

6.2 Experimental results



approximations. At the same time, the computation time of [7] Daniela Pucci de Farias and Benjamin Van Roy. On con-

the PALP policies is shorter or comparable to the computa-

tion time of the sampled approximations.

7 Conclusions

Development of scalable algorithms for solving real-world |9

MDPs is a challenging task. In this work, we investigated a
novel approach to approximate linear programming. Com-

paring to the standard ALP formulation, we decompose the
constraint space into a set of low-dimensional spaces. Thig0]

structure allows for solving the new LP more efficiently. In
particular, its constraints can be satisfied in a compaat for

without an exponential dependence on the treewidth of the
original constraint space. Our experiments demonstrate thi11]
superiority of the new approach when compared to existing

exact and approximate solutions to ALP.

Results of this paper can be extended in several ways. Firs[tlz
we have not addressed the topic of learning good partition-

ing matricedD. This topic is in many aspects similar to the
problem of efficient inference in Bayesian networks. In this

context, Meila [17] proposed using a mixture of trees to ap{13]

proximate an arbitrary joint probability distribution dedid

by a Bayesian network. Second, the bound in Theorem 2 is

definitely loose in practice. How to make this bound tight is

an interesting open question. Finally, PALP and its benefit$14]
should be studied on a more realistic problem than the one

presented in the experimental section.
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