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Abstract

While known algorithms for sensitivity anal-
ysis and parameter tuning in probabilistic
networks have a running time that is expo-
nential in the size of the network, the ex-
act computational complexity of these prob-
lems has not been established as yet. In this
paper we study several variants of the tun-
ing problem and show that these problems
are NPPP-complete in general. We further
show that the problems remain NP-complete
or PP-complete, for a number of restricted
variants. These complexity results provide
insight in whether or not recent achievements
in sensitivity analysis and tuning can be ex-
tended to more general, practicable methods.

1 Introduction

The sensitivity of the output of a probabilistic net-
work to small changes in the network’s parameters, has
been studied by various researchers [1, 14, 7, 2, 19, 4].
Whether the parameter probabilities of a network are
assessed by domain experts or estimated from data,
they inevitably include some inaccuracies. In a sen-
sitivity analysis of the network, the parameter prob-
abilities are varied within a plausible range and the
effect of the variation is studied on the output com-
puted from the network, be it a posterior probability
or the most likely value of an output variable.

The results of a sensitivity analysis are used, for ex-
ample, to establish the robustness of the network’s
output. The results are used also upon engineering
a probabilistic network, for example to distinguish be-
tween parameters which allow some imprecision and
parameters which should be determined as accurately
as possible [6]. Another use is for carefully tuning the
parameter probabilities of a network to arrive at some
desired model behavior [3].

Research efforts in sensitivity analysis and parameter
tuning for probabilistic networks have resulted in a va-
riety of fundamental insights and computational meth-
ods. While the majority of these insights and methods
pertain to a one-way sensitivity analysis in which the
effect of varying a single parameter probability on a
single output probability or output value is studied,
recently there also has been some pioneering work on
extending these insights to higher-order analyses [2, 6].

The currently available algorithms for sensitivity anal-
ysis and parameter tuning of probabilistic networks
have a running time that is exponential in the size
of a network. This observation suggests that these
problems are intractable in general. The actual com-
putational complexity of the problems has not been
studied yet, however. In this paper we define several
variants of the tuning problem for probabilistic net-
works and show that these variants are NPPP-complete
in general. We further show that the tuning problem
remains NP-comlete, even if the topological structure
of the network under study is restricted to a polytree,
and PP-complete, even if the number of conditional
probability tables involved is bounded.

Given the unfavorable complexity results obtained,
even for restricted cases of the tuning problem, we
have that we cannot expect to arrive at efficient, more
general computational methods for sensitivity analysis
and parameter tuning for probabilistic networks. Our
complexity results in fact suggest that further research
should concentrate on tuning a limited number of pa-
rameters, in networks where inference is tractable.

The paper is organized as follows. After briefly review-
ing the basic concepts involved in sensitivity analysis
and parameter tuning in Section 2, we present some
preliminaries from complexity theory in Section 3 and
formally define several variants of the tuning problem
in Section 4. We give a general completeness proof for
these problems in Section 5. We further address some
special, restricted cases of these problems in Section
6. The paper ends with our concluding observations



in Section 7.

2 Sensitivity analysis and tuning

A probabilistic network B = (G,Γ) includes a directed
acyclic graph G = (V,A), where V = {V1, . . . , Vn}
models a set of stochastic variables and A models the
(in)dependences between them, and a set of parame-
ter probabilities Γ, capturing the strengths of the rela-
tionships between the variables. The network models
a joint probability distribution Pr(V) =

∏n
i=1 Pr(vi |

π(Vi)) over its variables, where π(V ) denotes the par-
ents of V in G. We will use Pr(C = c |E = e) to denote
the probability of the value c of the output variable C,
given an instantiation e to the set of evidence vari-
ables E, which will be abbreviated as Pr(c | e). We
will denote a particular set of parameter probabilities
as X ⊆ Γ, and we will use X to denote a single param-
eter. We will use x and x to denote the combination of
values of a set of parameters, respectively the value of
a single parameter. In sensitivity analysis and param-
eter tuning, we are interested in the effect of changes
in the parameter probabilities X on an output prob-
ability for a designated variable C. The sensitivity
function fPr(c|e)(X) expresses the probability of the
output in terms of the parameter set X. We will omit
the subscript if no ambiguity can occur.

In a one-way sensitivity analysis, we measure the sensi-
tivity of an output probability of interest with respect
to a single parameter. The parameter under consider-
ation is systematically varied from 0 to 1 and the other
parameters from the same CPT are co-varied such
that their mutual proportional relationship is kept con-
stant [20]. Thus, if the parameter X = Pr(bi | ρ) (de-
noting the conditional probability of the value bi of
the variable B given a particular configuration ρ of
B’s parents) is varied from 0 to 1, the other parame-
ters Pr(bj |ρ) for the variable B are varied such that

Pr(bj |ρ)(X) = Pr(bj |ρ) · 1−X
1− Pr(bi |ρ)

for any value bj other than bi. Under the condition of
covariation, the sensitivity function f(X) is a quotient
of two linear functions [7] and takes the form

f(X) =
c1 ·X + c2
c3 ·X + c4

where the constants can be calculated from the other
parameter probabilities in the network.

A one-way sensitivity analysis can be extended to mea-
sure the effect of the simultaneous variation of two pa-
rameters on the output [5]. The sensitivity function
then generalizes to

f(X1, X2) =
c1 ·X1 ·X2 + c2 ·X1 + c3 ·X2 + c4
c5 ·X1 ·X2 + c6 ·X1 + c7 ·X2 + c8

In this function, the terms c1 ·X1 ·X2 and c5 ·X1 ·X2

capture the interaction effect of the parameters on the
output variable. This can further be generalized to n-
way sensitivity analyses [6, 2] where multiple param-
eters are varied simultaneously. While higher-order
analyses can reveal synergistic effects of variation, the
results are often difficult to interpret [20].

For performing a one-way sensitivity analysis, efficient
algorithms are available that build upon the observa-
tion that for establishing the sensitivity of an output
probability it suffices to determine the constants in the
associated sensitivity function. The simplest method
for this purpose is to compute, from the network, the
probability of interest for up to three values for the pa-
rameter under study; using the functional form of the
function to be established, a system of linear equations
is obtained, which is subsequently solved [7]. For the
network computations involved, any standard propa-
gation algorithm can be used. A more efficient method
determines the required constants by propagating in-
formation through a junction tree, similar to the stan-
dard junction-tree propagation algorithm [12]. This
method requires a very small number of inward and
outward propagations in the tree to determine either
the constants of all sensitivity functions that relate the
probability of interest to any one of the network pa-
rameters, or to determine the sensitivity functions for
any output probability in terms of a single parameter.
Both algorithms are exponential in the size of the net-
work, yet have a polynomial running time for networks
of bounded treewidth.

Closely related to analyzing the effect of variation of
parameters on the output—and often the next step af-
ter performing such an analysis—is tuning the param-
eters, such that the output has the desired properties.
The output may need to satisfy particular constraints,
e.g. Pr(c | e) ≥ q, Pr(c1 | e)/Pr(c2 | e) ≥ q or
Pr(c1 | e) − Pr(c2 | e) ≥ q, for a particular value q.
There are a number of algorithms to determine the
solution space for a set of parameters given such con-
straints [2]. The computational complexity of these
algorithms is always exponential in the treewidth w of
the graph (i.e., the size of the largest clique in the join-
tree), yet varies from O(cw) for single parameter tun-
ing, to O(n ·∏k

i=1 F (Xi) · cw) for tuning n parameters,
where c is a constant, k is the number of CPTs that in-
clude at least one of the parameters being varied, and
F (Xi) denotes the size of the i-th CPT. Note that the
tuning problem is related to the inference problem in
so-called credal networks [8], where each variable is as-
sociated with sets of probability measures, rather than
single values as in Bayesian networks. This problem
has been proven NPPP-complete [9].

Often, we want to select a combination of values for the



parameters that satisfies the constraints on the output
probability of interest, but has minimal impact on the
other probabilities computed from the network. In
other cases, we want the modification to be as small
as possible. In other words, we want to find a tuning
that not merely satisfies the constraints, but is also op-
timal, either with respect to the minimal amount of pa-
rameter change needed, or the minimal change in the
joint probability distribution induced by the parame-
ter change. Here we discuss two typical distance mea-
sures between joint probability distributions, namely
those proposed by Kullback and Leibler [13], and Chan
and Darwiche [3].

The distance measure introduced by Chan and Dar-
wiche [3], denoted by DCD, between two joint proba-
bility distributions Prx and Prx′ is defined as:

DCD(Prx,Prx′)
def
= ln max

ω

Prx(ω)
Prx′(ω)

− ln min
ω

Prx(ω)
Prx′(ω)

where ω is taken to range over the joint probabilities
of the variables in the network. The Kullback-Leibler
measure [13], denoted by DKL, is defined as:

DKL(Prx,Prx′)
def
=

∑
ω

Prx(ω) ln
Prx(ω)
Prx′(ω)

Calculating either distance between two distributions
is intractable in general. It can be proven that calcu-
lating DCD is NP-complete and that calculating DKL

is PP-complete1. The Euclidean distance is a conve-
nient way to measure the amount of change needed in
x to go from Prx to Prx′ . This distance, denoted by
DE , is defined as:

DE(x,x′)
def
=

√ ∑
xi∈x,x′

i∈x′

(xi − x′i)2

The Euclidean distance depends only on the parame-
ters that are changed and can be calculated in O(|X |).

3 Complexity theory

In the remainder, we assume that the reader is famil-
iar with basic concepts of computational complexity
theory, such as the classes P and NP, and complete-
ness proofs. For a thorough introduction to these sub-
jects we refer to textbooks like [10] and [16]. In ad-
dition to these basic concepts, we use the complex-
ity class PP (Probabilistic Polynomial time). This
class contains languages L accepted in polynomial time
by a Probabilistic Turing Machine. Such a machine
augments the more traditional non-deterministic Tur-
ing Machine with a probability distribution associated

1These results are not yet published but will be sub-
stantiated in a forthcoming paper.

with each state transition, e.g. by providing the ma-
chine with a tape, randomly filled with symbols [11]. If
all choice points are binary and the probability of each
transition is 1

2 , then the majority of the computation
paths accept a string s if and only if s ∈ L.

A typical problem in PP (in fact PP-complete) is the
Inference problem [15, 18]: given a network B, a
variable V1 in V, and a rational number 0 ≤ q ≤ 1,
determine whether Pr(V1 = v1) ≥ q. Recall that
Pr(V1, . . . , Vn) =

∏n
i=1 Pr(Vi | π(Vi)). To determine

whether Pr(v1) ≥ q, we sum over all marginal proba-
bilities Pr(V1, . . . , Vn) that are consistent with v1. This
can be done using a Probabilistic Turing Machine in
polynomial time. The machine calculates the mul-
tiplication of conditional probabilities Pr(Vi | π(Vi)),
i = 1, . . . , n, choosing a computation path in which
each variable Vi is assigned a value according to the
conditional probability Pr(Vi |π(Vi)). Each computa-
tion path corresponds to a specific joint value assign-
ment, and the probability of arriving in a particular
state corresponds with the probability of that assign-
ment. At the end of this computation path, we accept
with probability 1

2 + ( 1
q − 1)ε, if the joint value assign-

ment to V1, . . . , Vn is consistent with v1, and we accept
with probability ( 1

2 − ε) if the joint value assignment
is not consistent with v1. The majority of the compu-
tation paths (i.e., 1

2 + ε) then arrives in an accepting
state if and only if Pr(v1) ≥ q.
Another concept from complexity theory that we will
use in this paper is oracle access. A Turing Machine
M has oracle access to languages in the class A, de-
noted as MA, if it can query the oracle in one state
transition, i.e., in O(1). We can regard the oracle as
a ‘black box’ that can answer membership queries in
constant time. For example, NPPP is defined as the
class of languages which are decidable in polynomial
time on a non-deterministic Turing Machine with ac-
cess to an oracle deciding problems in PP. Informally,
computational problems related to probabilistic net-
works that are in NPPP typically combine some sort of
selecting with probabilistic inference.

Not all real numbers are exactly computable in finite
time. Since using real numbers may obscure the true
complexity of the problems under consideration, we as-
sume that all parameter probabilities in our network
are rational numbers, thus ensuring that all calculated
probabilities are rational numbers as well. This is a re-
alistic assumption, since the probabilities are normally
either assessed by domain experts or estimated by a
learning algorithm from data instances. For similar
reasons, we assume that ln(x) is approximated within
a finite precision, polynomial in the binary represen-
tation of x.



4 Problem definitions

In the previous sections, we have encountered a num-
ber of computational problems related to sensitivity
analysis and parameter tuning. To prove hardness re-
sults, we will first define decision problems related to
these questions. Because of the formulation in terms
of decision problems, all problems are in fact tuning
problems.

Parameter Tuning
Instance: Let B = (G,Γ) be a Bayesian network
where Γ is composed of rational probabilities, and let
Pr be its joint probability distribution. Let X ⊆ Γ be
a set of parameters in the network, let C denote the
output variable, and c a particular value of C.
Furthermore, let E denote a set of evidence variables
with joint value assignment e, and let 0 ≤ q ≤ 1.
Question: Is there a combination of values x for the
parameters in X such that Prx(c | e) ≥ q?

Parameter Tuning Range
Instance: As in Parameter Tuning.
Question: Are there combinations of values x and
x′ for the parameters in X such that
Prx(c | e)− Prx′(c | e) ≥ q?

Evidence Parameter Tuning Range
Instance: As in Parameter Tuning; furthermore
let e1 and e2 denote two particular joint value
assignments to the set of evidence variables E.
Question: Is there a combination of values x for the
parameters in X such that
Prx(c | e1)− Prx(c | e2) ≥ q?

Minimal Parameter Tuning Range
Instance: As in Parameter Tuning; furthermore
let r ∈ Q+.
Question: Are there combinations of values x and
x′ for the parameters in X such that DE(x,x′) ≤ r
and such that Prx(c | e)− Prx′(c | e) ≥ q?

Minimal Change Parameter Tuning Range
Instance: As in Parameter Tuning; furthermore
let s ∈ Q+, and let D denote a distance measure for
two joint probability distributions as reviewed in
Section 2 .
Question: Are there combinations of values x and
x′ for the parameters in X such that D(x,x′) ≤ s
and Prx(c | e)− Prx′(c | e) ≥ q?

Mode Tuning
Instance: As in Parameter Tuning; furthermore
let >(Pr(C)) denote the mode of Pr(C).
Question: Are there combinations of values x and
x′ for the parameters in X such that
>(Prx(C | e)) 6= >(Prx′(C | e))?

Furthermore, we define Evidence Mode Tuning,
Minimal Parameter Mode Tuning, and Minimal
Change Mode Tuning corresponding to the Pa-
rameter Tuning variants of these problems.

5 Completeness results

We will construct a hardness proof for the Parame-
ter Tuning Range problem. Hardness of the other
problems can be derived with minimal changes to the
proof construction. More specifically, we prove NPPP-
hardness of the Parameter Tuning Range-problem
by a reduction from E-Majsat; this latter problem
has been proven complete by Wagner [21] for the class
NPPP. We will use a reduction technique, similar to
the technique used by Park and Darwiche [17] to prove
NPPP-hardness of the Partial Map-problem.

We first observe that all tuning problems from Section
4 are in NPPP: given x, x′, q, r and s, we can ver-
ify all claims in polynomial time using a PP oracle,
since inference is PP-complete [18]. For example, with
the use of the oracle, we can verify in polynomial time
whether Prx(c | e)− Prx′(c | e) ≥ q, for a given x, x′,
and q. Likewise, we can calculate the Euclidean dis-
tance of x and x′ in polynomial time and verify that it
is less than r. Determining whether a distance between
two joint probability distributions is smaller than s is
NP-complete (for the distance DCD defined by Chan
and Darwiche [3]) or PP-complete (for the distance
DKL defined by Kullback and Leibler [13]). Thus, we
can non-deterministically compute an assignment to
X and check (using a PP oracle) that the distance is
smaller than s. Therefore, all problems are in NPPP.

To prove hardness, we will reduce Parameter Tun-
ing Range from E-Majsat, defined as follows:

E-Majsat
Instance: Let φ be a Boolean formula with n
variables Vi (1 ≤ 1 ≤ n), grouped into two disjoint
sets VE = V1, . . . , Vk and VM = Vk+1, . . . , Vn.
Question: Is there an instantiation to VE such that
for at least half of the instantiations to VM, φ is
satisfied?

We construct a probabilistic network Bφ from a given
Boolean formula φ with n variables Vi and instantia-
tion templates VE and VM. For all variables Vi, in
the formula φ, we create a matching stochastic vari-
able Vi in V for the network Bφ, with possible val-
ues true and false with uniform distribution. These
variables are roots in the network Bφ. We denote
Xi = Pr(Vi = true) as the parameter of Vi.

For each logical operator in φ, we create an additional
stochastic variable in the network, whose parents are
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Figure 1: Example of construction

the corresponding sub-formulas (or single variable in
case of a negation operator) and whose conditional
probability table is equal to the truth table of that
operator. For example, the ∧-operator would have a
conditional probability Pr(∧ = true) = 1 if and only
if both its parents have the value true, and 0 oth-
erwise. We denote the stochastical variable that is
associated with the top-level operator in φ with Vφ.
Furthermore, we add a variable S with values true
and false, with uniform probability distribution where
XS = Pr(S = true) is the parameter of S. Lastly, we
have an output variable C, with parents S and Vφ and
values true and false, whose CPT is equal to the truth
table of the ∧-operator. The set of parameters X in
the Parameter Tuning Range problem now is de-
fined to be {X1, . . . , Xk} ∪XS , i.e., the parameters of
the variables in VE and the parameter of S. We set
q = 1

2 .

Figure 1 shows the graphical structure of the prob-
abilistic network constructed for the E-Majsat in-
stance (φ,VE,VM), where φ = ¬(V1 ∨ V2) ∧ ¬V3,
VE = {V1, V2}, and VM = {V3}. Note that this E-
Majsat instance is satisfiable with V1 = V2 = F ; for
that instantiation to VE, at least half of the possible
instantiations to VM will satisfy the formula.

Theorem 1. Parameter Tuning Range is NPPP-
complete.

Proof. Membership of NPPP can be proved as follows.
Given x′ and x, we can verify whether Prx(c | e) −
Prx′(c | e) ≥ q in polynomial time, given an oracle that
decides Inference. Since Inference is PP-complete,
this proves membership of NPPP.

To prove hardness, we construct a transformation from
the E-Majsat problem. Let (φ,VE,VM) be an in-
stance of E-Majsat, and let Bφ be a probabilistic
network, with parameters x = {X1, . . . , Xk} ∪ XS ,

constructed as described above. Trivially, there ex-
ists a combination of parameter values x′ such that
Prx′(C = true) = 0, namely all assignments in which
XS = 0. In that case, at least one of the parents
of C has the value false with probability 1 and thus
Prx′(C = true) = 0.

On the other hand, if x includesXS = 1, then Prx(C =
true) depends on the values of X1, . . . , Xk. More
in particular, there exist parameter values such that
Prx(C = true) ≥ 1

2 , if and only if (φ,VE,VM) has a
solution. We can construct a solution x by assigning 1
to XS , 1 to all variables in {X1, . . . , Xk} where the cor-
responding variable in VE is set to true, and 0 where
it is set to false. On the other hand, if (φ,VE,VM) is
not satisfiable, then Prx(C = true) will be less than
1
2 for any parameter setting. Due to the nature of
the CPTs of the ‘operator’ variables which mimic the
truth tables of the operators, Prx(C = true) = 1 for
a value assignment to the parameters that is consis-
tent with a satisfying truth assignment to φ. If there
does not exist a truth assignment to the variables in
VE such that the majority of the truth assignments to
the variables in VM satisfies φ, then there cannot be a
value assignment to X such that Prx(C = true) ≥ 1

2 .
Thus, if we can decide whether there exist two sets of
parameter settings x and x′ such that in this network
Bφ, Prx(C = true)−Prx′(C = true) ≥ q, then we can
answer (φ,VE,VM) as well. This reduces E-Majsat
to Tuning Parameter Range.

Note that the constructed proof shows, that the Pa-
rameter Tuning Range problem remains NPPP-
complete, even if we restrict the set of parameters to
constitute only prior probabilities, if all variables are
binary, if all nodes have indegree at most 2, if the out-
put is a singleton variable, and if there is no evidence.
We will now show completeness proofs of the other
problems.

Corollary 2. All tuning problems defined in Section
4 are NPPP-complete.

Proof. We will show how the above construction can
be adjusted to prove hardness for these problems.

• Parameter Tuning: From the above con-
struct, leave out the nodes S and C, such that
x = {X1, . . . , Xk}. There is an instantiation x
such that Prx(Vφ = true) ≥ 1

2 , if and only if
(φ,VE,VM) has a solution.

• Evidence Parameter Tuning Range: From
the above construct, replace S with a singleton
evidence variable E with values true and false
and uniform distribution; denote E = true as e1
and E = false as e2 and let x = {X1, . . . , Xk}.



Prx(C = true | E = e2) = 0 for all possi-
ble parameter settings of x. On the other hand,
Prx(Vφ = true) ≥ 1

2 and thus Prx(C = true | E =
e1) ≥ 1

2 if and only if (φ,VE,VM) has a solution.

• Minimal Parameter Tuning Range and
Minimal Change Parameter Tuning
Range: These problems have Tuning Parame-
ter Range as a special case (set r, s = ∞) and
thus hardness follows by restriction.

• Mode Tuning: Since C has two values, Pr(C =
false) = 1− Pr(C = true). In particular, >(C) =
true if Pr(C = true) ≥ 1

2 , and >(C) = false if
Pr(C = false) ≥ 1

2 . If XS = 0 then >(C) = false.
Pr(C = true) ≥ 1

2 , if and only if >(C) = true.

Evidence Mode Tuning, Minimal Parameter
Mode Tuning, and Minimal Change Mode Tun-
ing: Apply similar construct modifications as with the
corresponding Parameter Tuning problems.

6 Restricted problem variants

In the previous section, we have shown that in the
general case, Parameter Tuning Range is NPPP-
complete. In this section, the complexity of the prob-
lem is studied for restricted classes of instances. More
in particular, we will discuss tuning problems in net-
works with bounded topologies and tuning problems
with a bounded number of CPTs containing parame-
ters to be tuned.

6.1 Bounded topologies

In this section we will show that restrictions on the
topology of the network alone will not suffice to make
the problem tractable. In fact, Parameter Tuning
Range remains hard, even if B is a polytree. Similar
results can be derived for the other problems. To prove
NP-completeness of Parameter Tuning Range on
polytrees, we reduce Maxsat to Parameter Tuning
Range on polytrees, using a slightly modified proof
from [17]. The (unweighted) Maxsat problem is de-
fined as follows:

Maxsat
Instance: Let φ be a Boolean formula in CNF
format, let Cφ = C1 . . . Cm denote its clauses and
Vφ = V1 . . . Vn its variables, and let 1 ≤ k ≤ m.
Question: Is there an assignment to the variables in
φ, such that at least k clauses are satisfied?

We will construct a polytree network B as follows. For
each variable in the formula, we create a variable in
the network with values true and false, with uniform

S0

V1 V2 Vn

S1 S2 Sn

VS

C

Figure 2: Construction with polytrees

probability distribution. We denote the parameter of
Vi as Xi as in the previous construct. We define a
clause selector variable S0 with values c1, . . . , cm and
uniform probability, i.e. Pr(S0 = ci) = 1

m . Further-
more, we define clause satisfaction variables Si, with
values c0, . . . , cm, associated with each variable. Ev-
ery variable Si has Vi and Si−1 as parents. Lastly, we
define a variable VS , with values true and false, with
uniform probability distribution, and parameter XS ,
and a variable C with values true and false, parents
XS and Sn. See Figure 2 for the topology of this net-
work. The CPT for Si(i ≥ 1) and C is given in Table 1.
In this table, T (Vi, j) and F (Vi, j) are Boolean predi-
cates that evaluate to 1 if the truth assignment to Vi
satisfies, respectively does not satisfy, the j-th clause.

Pr(Si | Vi, Si−1) Pr(C = T | VS , Sn)
Si−1 Si = c0 Si 6= c0 Sn xS ¬xS

c0 1 0 c0 1 0
cj T (Vi, j) F (Vi, j) cj 1 1

Table 1: CPT for Pr(Si | Vi, Si−1) and Pr(C | Sn, VS)

Theorem 3. Parameter Tuning Range remains
NP-complete if B is restricted to polytrees.

Proof. Membership of NP is immediate, since we can
decide Inference in polynomial time on polytrees.
Given x′ and x, we can thus verify whether Prx′(C =
c)− Prx(C = c) ≥ q in polynomial time.

To prove NP-hardness, we reduce Maxsat to Param-
eter Tuning Range. Let (φ, k) be an instance of
Maxsat. From the clauses Cφ and variables Vφ, we
construct Bφ as discussed above. Similarly as in the
previous proof, if XS = 0 then Pr(C = true) = 0
for any instantiation to the parameters X1 to Xn. If
XS = 1 then we observe the following. For every in-
stantiation cj to S0, the probability distribution of Si
is as follows. Pr(Si = c0 | Vi) = 1 if the instanti-
ation to V1 . . . Vi satisfies clause cj , and 0 otherwise.
Pr(Si = cj | Vi) = 1 if this instantiation does not sat-
isfy clause cj .



Pr(Si | xi) =


Si = c0, V1...i satisfies cj 1
Si = cj , V1...i satisfies cj 0
Si = c0, V1...i does not satisfy cj 0
Si = cj , V1...i does not satisfy cj 1
otherwise 0

Of course, Pr(Si) is conditioned on Vi and thus de-
pends on Xi. For Xi = 0 or Xi = 1, either Pr(Si =
c0) = 1 or Pr(Si = cj) = 1, for intermediate values of
Xi the probability mass is shared between Pr(Si = c0)
and Pr(Si = cj). But then Pr(Sn = c0) is 1 for a par-
ticular clause selection cj in S0, if and only if the pa-
rameter setting to X1 to Xn satisfies that clause. Due
to the conditional probability table of C and XS = 1,
Prx(C = true) = 1 if and only if the parameter set-
ting x satisfies that clause. Summing over S0 yields
Prx(C = true) = k

n , where k is the number of clauses
that is satisfied by x. Thus, a Parameter Tuning
Range query with values 0 and k

n would solve the
Maxsat problem. This proves NP-hardness of Pa-
rameter Tuning Range on polytrees.

6.2 Bounded number of CPTs

In the previous section we have shown that a restric-
tion on the topology of the network in itself does not
suffice to make parameter tuning tractable. In this sec-
tion we will show that bounding the number of CPTs
containing parameters in X in itself is not sufficient
either. Note that trivial solutions to the Parameter
Tuning may exist for particular subsets X of the set
of parameter probabilities Γ. For example, if X consti-
tutes all conditional probabilities Pr(C = c |π(C)), for
all configurations of parents of C, then a trivial solu-
tion would set all these parameters to q. If the number
of parameters in X is logarithmic in the total number
of parameter probabilities, i.e., | X |≤ p(log | Γ |) for
any polynomial p, then the problem is in PPP, since we
can try all combinations of parameter settings to 0 or
1 in polynomial time, using a PP-oracle.

If both the number of CPTs containing one or more
parameters in the set X is bounded by a factor k (in-
dependent of the number of total number of parame-
ter probabilities), and the indegree of the correspond-
ing nodes is bounded, then Parameter Tuning is
PP-complete. Hardness follows immediately since Pa-
rameter Tuning has Inference as a trivial special
case (for zero parameters). We will prove member-
ship of PP for this problem for a single parameter in
a root node and show that the result also holds for a
k-bounded number of CPTs with m parents. Similar
observations can be made for the other tuning prob-
lems defined in Section 4.

Theorem 4. Parameter Tuning is PP-complete if
the number of CPTs containing parameters and the
indegree of the corresponding nodes are bounded.

Proof. First let us assume k = 1, i.e., all n param-
eters are taken from the CPT of a single node V .
Furthermore, let us assume for now that V is a root
node. To solve Parameter Tuning, we need to de-
cide whether Pr(C = c) ≥ q for a particular combina-
tion of values of the parameters in X. Conditioning
on V gives us

∑
i Pr(C = c | V = vi) · Pr(V = vi).

Since
∑
i Pr(V = vi) = 1, Pr(C = c) is maximal

for Pr(V = vi) = 1 for a particular vi. Thus, if we
want to decide whether Pr(C = c) ≥ q for a partic-
ular combination of values of the parameters, then it
suffices to determine whether this is the case when we
set Pr(V = vi) = 1 for a particular parameter vi.2

Using this observation, we will construct a Probabilis-
tic Turing MachineM by combining several machines
accepting Inference instances. At its first branch-
ing step, M either accepts with probability 1

2 , or
runs, with probability 1

2n , one of n Probabilistic Tur-
ing Machines Mi(i = 1, . . . , n), which on input Bφ,i

(with Pr(V = vi) = 1) and q accept if and only if
Pr(C = c) = q. If any Mi accepts, then M accepts.
The majority of computation paths of M accepts if
and only if the Parameter Tuning instance is sat-
isfiable. If V is not a root node, then we must branch
over each parent configuration. For k CPTs with at
most n parameters in each CPT and m incoming arcs,
we need to construct a combined Probabilistic Tur-
ing Machine consisting of O(nm

k

) Probabilistic Tur-
ing Machines accepting instances of Inference. For
bounded m and k, this is a polynomial number of ma-
chines and thus computation takes polynomial time.
Thus, Parameter Tuning is in PP for a bounded
number of CPTs containing parameters and a bounded
indegree of the corresponding nodes m and k.

7 Conclusion

In this paper, we have addressed the computational
complexity of several variants of parameter tuning.
Existing algorithms for sensitivity analysis and param-
eter tuning (see e.g. [2]) have a running time, expo-
nential in both the treewidth of the graph and in the
number of parameters varied. We have shown that pa-
rameter tuning is indeed hard, even if the network has
a restricted polytree and if the number of parameters is
bounded. We conclude, that Parameter Tuning is
tractable only if both constraints are met, i.e., if proba-
bilistic inference is easy and the number of parameters
involved is bounded.

2If the number of parameters subject to tuning does not
constitute all parameter probabilities in the CPT, then we
need to test whether Pr(C = c) ≥ q when all parameters
have the value 0 as well.
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