Learning Hidden Markov Models for Regression
using Path Aggregation

Keith Noto

Mark Craven

Dept. of Computer Science and Engineering Dept. of Biostatistics and Medical Informatics

University of California San Diego
La Jolla, CA 92093
knoto@cs.ucsd.edu

Abstract

We consider the task of learning mappings
from sequential data to real-valued responses.
We present and evaluate an approach to
learning a type of hidden Markov model
(HMM) for regression. The learning process
involves inferring the structure and parame-
ters of a conventional HMM, while simultane-
ously learning a regression model that maps
features that characterize paths through the
model to continuous responses. Our results,
in both synthetic and biological domains,
demonstrate the value of jointly learning the
two components of our approach.

1 Introduction

A wide array of problems in speech and language
processing, biology, vision, and other application do-
mains involve learning models that map sequences of
inputs into some type of output. Common types of
task include learning models that classify sequences
(e.g., [12]), segment or parse them (e.g., [13]), or map
input sequences to output sequences (e.g., [3]). Here
we consider the task of learning models that map in-
put sequences to real-valued responses. We present an
approach to this problem that involves simultaneously
learning a hidden Markov model (HMM) and a func-
tion that maps paths through this model to real-valued
responses. We evaluate our approach using synthetic
data sets and a large collection from a yeast genomics
study.

The type of task that we consider is illustrated in Fig-
ure 1. This is a type of regression task in that the
learner must induce a mapping from a given input se-
quence to a real-valued response. In particular, we
assume that the real-valued responses can be repre-
sented as a function of the presence and arrangement
of particular motifs that occur in the sequences. Each

University of Wisconsin
Madison, WI 53706
craven@biostat.wisc.edu

of these motifs is a pattern that allows some variability
in the subsequences that match it.

We assume that neither these motifs nor their locations
in the sequences are given to the learner, but instead
must be discovered during the learning process. The
learner must also determine the extent to which each
motif and its relationships to other motifs contribute
to the response variable.

Our research is motivated by a class of problems in
computational biology that involve inferring the extent
to which particular properties of genomic sequences
determine certain responses in a cell. For example,
the level at which an individual gene is expressed in a
given condition often depends on the presence of par-
ticular activators that bind to sequence motifs nearby
the gene. Moreover, the number of binding motifs,
their arrangement in the sequence, and intrinsic prop-
erties of the motifs themselves may contribute to the
response level of the gene. Thus, in order to explain
the expression levels of genes in some condition, a
model needs to be able to map these sequence proper-
ties into continuous values.

The approach that we present involves simultaneously
learning (i) the structure and parameters of a hidden
Markov model, and (ii) a function that maps paths
through the model to real-valued responses. The hid-
den Markov model is able to represent the relevant
sequence motifs and the regression model is able to
represent the mapping from occurrences of these mo-
tifs to the response variable.

There are several bodies of related research. First,
there is a wide variety of architectures and methods
for learning HMMs [19], stochastic context-free gram-
mars [17], and related probabilistic sequence models,
such as conditional random fields [13]. For some types
of problems, these models include continuous random
variables. Typically these continuous variables depend
only on a few other variables, and the dependencies are
encoded at the outset. In our models, in contrast, the

...accaaaattt cgatgagfttagaaggta..

...aaagaaaaaaaaaaaaagaaaagaaaaaa..4
..caaaggpgcgatgagphtaaaagcgatpaaaatttttpag..

...gchcgactcghcgatgaghtgaﬁcagagataaaqacam
..gagctggatgctptaaatttcttphggtataaagtacga..
...aacEagaatttattl:atcattaagcgatgcgjgctcact‘..
..ccattttttctctcttttataagaatapaatgttttth..
.‘.ttcactaaaalgtaaattttch:ttttccaa‘..

Figure 1: An example of the sequence-based regression
task that we are addressing. Each row in the figure repre-
sents a particular training instance. Each instance consists
of a DNA sequence and an associated real-valued output.
The sequences in this example contain two types of motifs;
m1 whose consensus sequence is gcgatgag and meo whose
consensus sequence is aaaaattttt. In the tasks we consider,
the motifs and their occurrences are hidden. The learning
task involves discovering the motifs and their occurrences
in the sequences, and inferring a function that maps motif
occurrences to the real value associated with each sequence.
In this example, y ~ 3 X v1 46 X v2, where v1 represents the
number of occurrences of m; and ve represents the number
of occurrences of mo.

o JdouUld WN K
0 O U WO Wo
;\)'—‘LOLO’—‘l—'[\)O

continuous response variable may depend on quite a
few variables that characterize the input sequence, and
these variables and their dependencies are determined
during the learning process.

There is also large corpus of work on the topic of re-
gression methods [7]. Most regression methods assume
that each instance is represented using a fixed-size set
of pre-defined variables. Our approach, on the other
hand, assumes that each instance is represented by
a sequence of values, but these sequences may vary in
their lengths and the positions of the relevant sequence
elements may vary as well. Moreover, our method is
designed to derive a set of variables, from the given
sequences, that are predictive of the response variable.

Various groups have devised kernels defined over se-
quences that provide mappings from sequence features
to real numbers. These string kernels can be used
to map sequences to feature vectors which can then
be used for regression or classification [15]. However,
these kernels encode predefined sequence features. In
contrast, our method is designed to learn which se-
quence features best provide input to the regression
part of the model. Jaakkola et al. [8] have used HMMs
to identify the relevant aspects of sequences then, in a
second step, the Fisher kernel for classification based
on the HMM representations. Our experiments in
Section 3 indicate that more accurate models can be
learned by using the training signal to guide the dis-
covery of relevant sequence features.

Several inductive logic programming (ILP) methods
for learning regression models have been previously de-
veloped [9,11]. The algorithms are similar to ours in
that they can handle variable-sized descriptions of in-

stances and they employ an expressive representation
for regression tasks. They differ from our approach
in that they are not designed to discover sequence mo-
tifs and use properties of these motifs in the regression
model. This aspect of our approach is essential for the
problems we consider.

A variety of methods have been developed for discov-
ering motifs in biological sequences [1, 14, 16], and for
identifying arrangements of motifs that are involved in
particular biological processes [20,22]. These methods
are designed for either unsupervised pattern discovery
or supervised classification tasks. They either try to
find motifs that are over-represented in a given set of
sequences, or they try to find motif arrangements that
distinguish two given sets of sequences. Our method,
in contrast, is intended for regression tasks. There are
also several methods that learn models that character-
ize gene-expression responses in terms of sequence fea-
tures. Some of these approaches first group expression
values into discrete sets and then frame the problem as
a classification task [2,21]. Other methods use a two-
phase approach that first identifies candidate motifs
without the use of expression data, and then learns a
regression model from expression data and these fixed
sequence features [5,23]. The key difference between
our approach and these methods is that, in our ap-
proach, the real-valued response associated with each
sequence is a training signal that has a direct influence
on the sequence features represented by the model.

2 Approach

The task that we consider is to learn a function
which maps a given discrete character sequence x =
{1, x9, ..., 21} to a real-valued scalar y. In this section
we describe the representation we employ and discuss
the procedure we use for learning the models.

2.1 Representation

We assume that there are certain features, or motifs,
present in each sequence x that determine the associ-
ated y value. However, in the tasks that we consider,
the learner is given only sequences and their response
values, and must discover both the motifs and their
locations in the sequences. Thus, our approach in-
volves learning the structure and parameters of a hid-
den Markov model that represents these motifs. The
other key component of our learned model is a regres-
sion function that maps from occurrences of the motifs
to y values. In particular, we associate certain states
in the HMM with motifs, and represent the putative
occurrences of motifs in a given sequence by keeping
track of the number of times that each of these states
is visited. That is, a subset of the states in the HMM

Figure 2: An HMM for regression and the corresponding graphical model. Panel (a) shows the state topology of a simple
HMM that is able to represent occurrences of two types of motifs in given sequences. Each motif consists of exactly
two DNA bases. For the ith motif, these bases are emitted by the states m;; and m;2. The state labeled BG emits
the remaining “background” of the sequence. To calculate the distribution over the possible motif occurrences for each
sequence, we count visits to states mi2 and mae. Panel (b) shows the structure of the corresponding graphical model
when processing a sequence of length L. The X; variables represent the observable sequence characters. The S; variables
represent the corresponding HMM state for each position in the input sequence. The Vi; (Va;) variables represent the
number of visits to state mi2 (mg2) at or before the ith character in the input sequence. The Y variable represents the
real-valued response for the given instance. Probabilistic dependencies are illustrated using solid lines and deterministic
dependencies are illustrated using dashed lines. Panel (c) shows the instantiation of variables in the graphical model for

the instance (actacaacttg, 9.0) and a particular path through the HMM that visits mi2 twice and ms2 once.

{c1,ca,...,cn } are designated as “counted” states, and
a path through the model defines an integer vector
v = (v1,v9,...vN), where each vy, is the number of vis-
its to state cy.

More generally, we have uncertainty about the “cor-
rect” path through the model, and therefore uncer-
tainty about the number of visits to each state cg.
Consider the HMM shown in Figure 2(a). There are
two types of motifs, each two characters long. The
motif occurrences are assumed to be interspersed with
variable-length “background” sequence which is mod-
eled by the BG state!. In this HMM, we count visits
to each motif (i.e., ¢y = mia, co = may). Figure 2(b)
shows the corresponding graphical model when pro-
cessing a sequence of length L. Each circle represents
a random variable in the model, and edges represent
direct dependencies. Probabilistic dependencies are
shown with solid lines and deterministic dependencies
are shown with dashed lines. Figure 2(c) shows the
values taken on by the variables in the model for a
case in which x = actacaacttg, y = 9.0, and we have

! As an alternative to a self-transition, our background
models include a probability distribution over lengths of
subsequence, making these models generalized [4] or hidden
semi-Markov models.

assumed a particular path through the HMM. This
path involves going through the top motif twice and
the lower motif once. We discuss each of the random
variables in turn.

Each variable X; represents the ith character in the in-
put sequence x. The variable S; represents the HMM
state that we are in after explaining the first ¢ charac-
ters of x. This state depends directly on the previous
state, and this dependency is encoded by the HMM
transition parameters. The variable X; depends on
the corresponding state variable .S;, and this relation-
ship is encoded via the HMM emission parameters. In
the problems we consider, these state sequences are
hidden during both training and testing.

Each Vj, ; represents the number of visits to state ¢ in
the paths through the HMM which explain the first ¢
characters of x. These variables are also hidden and
depend on the HMM state S; and the corresponding

variable from the previous position, Vj ;1. They are
updated as follows:

_)) o P(Vkﬂ'_l =V — 1) if S; = Cg
P(Vi,i = v, Vii—1) = { P(Vii1 =) otherwise

(1)
Moreover, as illustrated by the edges between the bot-
tom two nodes in each column of Figure 2(b), we may

represent dependencies among the V;, ; variables at the
ith position. Doing this enables us to model an arbi-
trary joint distribution characterizing the visits to the
“counted” states.

Finally, the variable Y in Figure 2(b) is the real-valued
response associated with the sequence in question. Its
value depends on the number of visits to all counted
states after explaining the entire sequence. Thus, the
last column of visit count variables in Figure 2(b) de-
termines the response value, y = f((Vir,..., VNL)).

We represent Y using a linear Gaussian model. Let V
denote the vector of variables (Vi, ..., V), and let v
denote a particular vector of visit counts (v1r, ..., UNL)-
Given a specific v, this model represents the probabil-
ity distribution of Y as a Gaussian whose mean is a
linear function of the visit-count vector:

p(Y|v) = N(Brvir + Baver + ... + ﬁNUNL,az) (2)

Here, each (B is an unknown model parameter which
represents the contribution to the response variable of
each occurrence of the motif represented by state cy.
The standard deviation ¢ is also a model parameter
to be learned.

Since the V variables are hidden, we may infer a distri-
bution for Y given a sequence x, by marginalizing out
V, based on its likelihood given x which is computed
by our hidden Markov model.

p(Y[x) =Y p(Y|v)P(v]x). 3)

Note that (3) involves a summation over the possi-
ble values of v. In general, the number of possible
values can increase exponentially with the number of
counted states IV, but in practice, N is a small num-
ber of features. There are tasks in which it is use-
ful to have a larger number of counted states, and in
many such cases, the calculations are still tractable
because the HMM topology and the sequence charac-
ters in x prevent otherwise possible values of v from
having a nonzero probability. If the number of possi-
ble values of v is still prohibitively large, then we may
choose to consider only its most likely values, or we
may instead calculate the expected value of V which
is v = (01,02, ..., 0n), where each 0 =Y P(d(m)|x),
where §(m) deterministically maps a path 7 through
the HMM to the appropriate vector. v is computed ef-
ficiently using dynamic programming. p(Y|x) is then
estimated as p(Y'|V).

2.2 Parameter Learning
Given an HMM structure, we select parameter values

to maximize the joint probability of the observed input
sequences and their associated response values. Taking

into account uncertainty in the “correct” path for each
given sequence, and the dependencies represented in
the model, we can express the objective function as:

arg max H Z [P(s: ®)P(x|s: O)p(y|lv=4(s) : B,0)]

®,8,0
(xy) s

(4)
where s; is the HMM state we are in at the ith char-
acter of x. This product ranges over all of the (x,y)
pairs in the training set, ® represents the usual set of
HMM state transition and character emission parame-
ters, and B and o are the parameters of the regression
model described above. Note that, because a given
s maps deterministically onto a particular v = §(s),
we do not need to sum over v. We train using an
expectation-maximization (EM) approach which is a
slight modification of the standard Baum-Welch algo-
rithm for HMMs [19].

E-step: EM algorithms are already widely used for
training HMM models to represent sequence motifs
(e.g. [1]). The difference between standard Baum-
Welch and our approach is that we calculate the ex-
pected values for our hidden variables taking into ac-
count y as well as x. To accomplish this, we calculate
a probability distribution over V.= (Vi1,Var, ..., Vnr)
given x, y and our model parameters by considering
each possible value for v. The probability is given by

P(vlxy:©.8,0) = Lolylv.x: Bo) ()

where Z is a normalization constant. This is
the base-case initialization for the backward calcu-
lations involved in standard E-step of Baum-Welch.
Apart from this, we compute the expected val-
ues for all hidden variables Vj1,Vi2,..Vn -1 and
51,52, ...,5, using the standard forward-backward
calculations, which update the probability distribution
over Vir, Var, ..., VN accounting for x and ©.

M-step: Apart from the initialization of the back-
ward calculations described above, the estimation of
our HMM parameters ® are calculated using stan-
dard M-step of Baum-Welch. We choose our regres-
sion model parameters 3 and ¢ using standard least-
squares regression, except that the possible values for
v given a training example ¢ are weighted by their like-
lihood given x; and y;. Thus, we minimize the total
expected squared difference between the observed and
predicted response values in the training set. This is
calculated by marginalizing over the possible values for
v, according the their likelihood P(v|x;,y; : ©,3,0),
which is calculated in the E-step:

D
B = argmyx S 3" Pvlx. i ©.8,0)(y: B -v)’
(2 v (6)

where D is the training set size. Let Hy be the max-
imum number of visits to state ¢;. 2 V = chv Hy is
the number of possible values of v. Equation (6) has
the closed-form solution:

B=(ATTA)'ATTDb (7)

where A is a VD x N matrix of all possible values of
v for each training example, b is a VD x 1 vector of
the y response values corresponding to each row of A,
and I is a VD x VD diagonal matrix, where each value
~; represents the likelihood of v in row i of A, given
the appropriate training example, i.e. v = P(v =
(0,0,...,0)|x1,91 : ©,8,0).

O 0 --- 0 n
| Hi Hy --- Hy | wn
A= 0 0 0 ’b_ Y2 ’
| Hi Hy --- Hy | | YD |
Mmoo 000 0]
0 v 0 0
I= (8)
. 0
L0 0 -~ 0 ~wp |

The value for o is estimated from the (minimized)
expected difference between our best fit line and the
data points.

Again, if the number of possible values of v is pro-
hibitively large, we can sample from the distribution
of v or we can use the expected number of visits 0y to
each ¢, and solve 8 = (ATA)~'ATb, where

Vi Y1
V2 Y2

A= . b= . (9)
VD YD

and Vv; is the vector of expected visits calculated for
the ¢th training sequence, x;.

2.3 Structure Learning

Our task includes learning the underlying model struc-
ture as well as parameters. This structure refers to
the set of states and transitions that define the HMM

2In practice, to make our calculations more efficient, if
there is a cycle in the HMM topology that includes state
ck, we set Hy to the highest number of visits to state ck
that can reasonably be expected to occur.

@
@)
o

Figure 3: An HMM structure that considers both the pres-
ence and arrangement of over-represented sequence char-
acters. This example has two such substrings, m; and ma,
which are chains of states but encapsulated here as single
states. Other characters are explained by the BG back-
ground states. We count visits to states labeled c,.

topology. Although our regression approach applies
to arbitrary HMM structures, we are primarily inter-
ested in the occurrence and arrangement of motifs.
These motifs represent classes of short substrings with
character preferences at each position. Whereas Fig-
ure 2(a) shows a model that can represent an arbi-
trary number of occurrences of two very short motifs,
more sophisticated arrangements can be encoded in
the HMM topology. Consider the structures shown
in Figure 3. Here each shaded, rounded shape rep-
resents a sequence of states modeling a single motif.
This model considers not only the presence of partic-
ular motifs, but also their logical arrangement. The
counted states (although they may be visited at most
once) correspond to each combination of these sub-
strings, and thus the response variable Y is a function
of not only the presence of particular sequence char-
acters, but it is also senstitive to whether or not they
appear in the preferred order.

Instead of searching through the space of arbitrary
HMM topologies by adding and removing individual
states and transitions, our search operators are ori-
ented toward the presence and arrangement of motifs.
In our experiments, we begin our structure search with
a single motif. We learn the parameters for this model
and search HMM structure space by introducing addi-
tional motifs. We repeat this search process from dif-
ferent initial parameters some fixed number of times,
and return the model structure and parameters that
perform the best on the training set or a tuning set.

3 Results

Our task is to learn the structure and parameters of an
HMM, as well as the parameters of our regression func-
tion. We hypothesize that an algorithm which uses
the real-valued response associated with each input se-
quence to train HMM parameters is able to learn more
accurate models than an approach which does not. To

test this hypothesis, we compare our path-aggregate
learning approach to a slightly less sophisticated two-
phase version, where we first learn the HMM parame-
ters © (using standard Baum-Welch), and then learn
the parameters of our regression model (3, 0), from ©
and the observed sequence and response data. The key
difference is that the regression model is just learned
once in the two-phase approach, rather than iteratively
refined as described in the previous section.

Given an input sequence x, our models predict a prob-
ability density over the response y. In order to com-
pare our method to the baseline method, we select a
single value g, by calculating the Viterbi (most likely)
path through the HMM and then calculating the corre-
sponding response according to the regression model,
i.e. § = B -v, where v is the counted state visits
implied by the Viterbi path.

To measure the accuracy of our models, we calculate
the average absolute error on held-aside test sequences:
error = £ >, [y;—s|. We test our learner on both sim-
ulated data and real gene expression data from yeast.
For the yeast data, we believe the gene expression mea-
surement is a function, in part, of a combination of
short DNA motifs in the gene’s promoter region, to
which transcription factor proteins may bind to reg-
ulate the gene’s expression. For the simulated data,
we create such a situation by planting known motifs
in simulated DNA sequence data.

For each simulated data experiment, We generate 200-
character sequences from the alphabet {a,c,g,t}. We
then plant 10-character motifs in each sequence. The
number of times each motif is planted comes from
a Poisson distribution with A = 1. Only two of
the motifs affect the response value, which is set to
—247 X v + 3 X v + &, where v; is the number of
times motif ¢ was planted in the sequence, and ¢ is ran-
dom noise distributed normally from N(0,1). In our
experiments, we vary the number of additional motifs
(that do not affect response), and the “mutation rate,”
where a rate of r means that r characters in each motif
are changed at random before the motif is planted.

The HMM model that we use is similar to the one
shown in Figure 2(a), except that it varies in the num-
ber of motifs, and they are each 15 characters wide.
We explore structures with one or two motifs, restart-
ing 10 times with different initial settings. We keep the
model with the highest accuracy on a held-aside tun-
ing set. For each experiment, we generate 128 train-
ing sequences, 128 tuning sequences and 256 testing
sequences, and we replicate each experiment several
times.

Figure 4 shows how the accuracy of our learned mod-
els changes as a function of the mutation rate, and as

S
|
@
(%]
@
Q
|_
(]
(o)}
o
[}
>
<

05 Two-phase Baseline —— 4

Path-aggregate Learner »x:-
0 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9
Number of Additional Planted Motifs

3.5 .
: ! ,
0 e
| .
n 4
17
o
|_ 4
Q
(o)}
s .
e 1t 1
<

05 | Two-phase Baseline ——

Path-aggregate Learner :-x--=
0 L L L L L L
0 1 2 3 4 5 6 7

Number of Character Mutations

Figure 4: Test set error rate on simulated data compar-
ing the path-aggregation learning approach to a two-phase
baseline. Top: Test set error as a function of additional
planted motifs that do not affect the response. Bottom:
Test set error as a function of mutation rate (using five
additional planted motifs).

a function of the number of additional planted motifs
(apart from the two motifs that affect the response).
The error rate using our approach is consistently less
than that of the two-phase baseline, and tends to level
off even as the number of mutations or additional mo-
tifs increases. Also, the recovery rate of the planted
motifs is consistently higher using our integrated ap-
proach than that of the two-phase baseline. For in-
stance, as we vary mutation rate and motif set size, we
find that our approach returns the exact 10-character
string of the motifs four times as often than the two-
phase baseline. We conjecture that the reason our
approach learns more accurate models than the two-
phase baseline is because it is able to pick out the
motifs that affect the response value instead of over-
represented motifs which do not.

To determine whether our approach can aid in the
discovery of motifs in real genomic data, we use
data from the yeast gene expression analysis of
Gasch et al. (2000). In these experiments, yeast cells

15 |]

05 | |

Test Set Error Rate: Path Aggregate Learner
N
+,

0 I I I |
0 0.5 1 15 2 25 3 35 4

Test Set Error Rate: Two-Phase Baseline

35 P

05 L |

Test Set Error Rate: Path Aggregate Learner
N

O ."".' L L L L
0 0.5 1 15 2 25 3 3.5 4

Test Set Error Rate: Average Training Response Baseline

Figure 5: Test set error rate over 15 data sets, compar-
ing our path-aggregate learner with the two-phase baseline
(top) and the average training set response baseline (bot-
tom). Each point represents one data set. Points are below
the diagonal on datasets where our approach has a smaller
error rate.

are put in a variety of stress conditions, such as heat
shock or amino acid starvation, and measurements of
gene expression are taken using microarrays to deter-
mine which genes’ activity is increased or decreased
specifically in these conditions. We choose 15 of these
experiments that have the highest degree of differen-
tial expression and represent a variety of experimental
conditions. From each of these, we select genes which
are differentially expressed, and a control group with
approximately the same number of genes. For each
gene, we obtain 500 base pairs of promoter sequence
from the University of California Santa Cruz genome
browser [10].

For these data sets, we use models similar to the ones
we have previously shown to be well-suited to the task
of identifying motifs in promoter data [18]. An ex-
ample of the HMM structure is shown in Figure 3.
These models are able to represent conjunctions of
motifs occuring in specific orders. Instead of count-
ing motif occurrences, the regression model considers

which combinations of motifs occur in each sequence.
We search over the space of possible structures by in-
crementally adding new motifs to the existing model.
Each such addition affects several parts of the HMM
topology. We limit this search to a maximum of two
motifs, and we find in our experiments that both our
approach and the baseline method return a variety of
different HMM structures. Since the initial parame-
ter values affect the results of EM training, the motif
emission parameters are initialized by sampling from
the training sequences.

As one additional baseline, we include a model that
always predicts the average training set expression as
the predicted response: y = %le y;- The results
are shown in Figure 5. The top panel in the figure
compares our approach to the two-phase basline. The
bottom panel compares against the average-expression
baseline. The models learned by our path-aggregate
approach are more accurate than the two-phase base-
line for 13 of the 15 data sets. Eight of these 13 are
statistically significant at a p-value of 0.05, using a
two-tailed, paired t-test over the ten cross-validation
folds. Our models are more accurate than the training
set average baseline for 12 of 15 data sets (10 of these
are statistically significant).

4 Conclusion

We have presented a novel approach for learning HMM
models for sequence-based regression tasks. Our ap-
proach involves simultaneously learning the structure
and parameters of an HMM, along with a linear regres-
sion model that maps occurrences of sequence motifs
to the response variable. Our experiments indicate
that integrating the processes of learning the HMM
and the associated regression model yields more ac-
curate models than a two-phase baseline regression
approach which first learns the HMM and then sub-
sequently learns a regression model. We note that
this baseline is fairly sophisticated, compared to many
methods for sequence-based regression, in that it does
not rely on a fixed, pre-defined set of features to rep-
resent each sequence being processed.

Acknowledgements

This research was supported in part by NIH grants T15
LMO007359, R01 LM07050, and R0O1 GMO077402. The au-
thors would like to thank Audrey Gasch, Yue Pan and Tim
Durfee for help with data and analysis.

References

[1] T. Bailey and C. Elkan. Unsupervised learning of
multiple motifs in biopolymers using expectation
maximization. Machine Learning, 21:51-83, 1995.

2]

3]

[11]

[12]

[13]

M. A. Beer and S. Tavazoie. Predicting gene ex-
pression from sequence. Cell, 117:185-198, 2004.

Y. Bengio and P. Frasconi. An input output HMM
architecture. In G. Tesauro, D. Touretzky, and
T. Leen, editors, Advances in Neural Information
Processing Systems, volume 7. MIT Press, Cam-
bridge, MA, 1995.

C. Burge and S. Karlin. Prediction of complete
gene structures in human genomic DNA. Journal
of Molecular Biology, 268:78-94, 1997.

E. M. Conlon, X. S. Liu, J. D. Lieb, and J. S.
Liu. Integrating regulatory motif discovery and
genome-wide expression analysis. Proc. of the Na-
tional Academy of Sciences, 100(6):3339, 2003.

A. P. Gasch, P. T. Spellman, C. M. Kao,
O. Carmel-Harel, M. B. Eisen, G. Storz, D. Bot-
stein, and P. O. Brown. Genomic expression pro-
grams in the response of yeast cells to environ-
mental changes. Molecular Biology of the Cell,
11(12):4241-57, 2000.

T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning. Springer-Verlag,
2001.

T. Jaakkola, M. Diekhans, and D. Haussler. Using
the Fisher kernel method to detect remote protein
homologies. In Proc. of the Seventh International
Conf. on Intelligent Systems for Molecular Biol-
ogy. AAAT Press, 1999.

A. Karali and 1. Bratko. First order regression.
Machine Learning, 26(2-3):147-176, 1997.

D. Karolchik, A. Hinrichs, T. Furey, K. Roskin,
C. Sugnet, D. Haussler, and W. Kent. The UCSC
table browser data retrieval tool. Nucleic Acids
Research, 32(1):D493-D496, 2004.

S. Kramer. Structural regression trees. In Proc. of
the Thirteenth National Conf. on Artificial Intel-
ligence, pages 812-819. AAAI/MIT Press, 1996.

A. Krogh, M. Brown, I. S. Mian, K. Sjolander,
and D. Haussler. Hidden Markov models in com-
putational biology: Applications in protein mod-
eling. Journal of Molecular Biology, 238:54—61,
1994.

J. Lafferty, A. McCallum, and F. Pereira. Con-
ditional random fields: Probabilistic models for
segmenting and labeling sequence data. In Proc.
of the FEighteenth International Conf. on Ma-
chine Learning, pages 282-289. Morgan Kauf-
mann, 2001.

[14]

[16]

[17]

18]

[23]

C. Lawrence, S. Altschul, M. Boguski, J. Liu,
A. Neuwald, and J. Wootton. Detecting subtle
sequence signals: A Gibbs sampling strategy for
multiple alignment. Science, 262:208-214, 1993.

C. Leslie, E. Eskin, and W. Noble. The spectrum
kernel: A string kernel for SVM protein classifica-
tion. Pacific Symposium on Biocomputing, 7:566—
575, 2002.

N. Li and M. Tompa. Analysis of computational
approaches for motif discovery. Algorithms for
Molecular Biology, 1:8, 2006.

C. Manning and H. Schiitze. Foundations of Sta-
tistical Natural Language Processing. MIT Press,
Cambridge MA, 1999.

K. Noto and M. Craven. Learning probabilis-
tic models of cis-regulatory modules that repre-
sent logical and spatial aspects. Bioinformatics,
23(2):e156-e162, 2007.

L. R. Rabiner. A tutorial on hidden Markov mod-
els and selected applications in speech recogni-
tion. Proc. of the IEEE, 77(2):257-286, 1989.

E. Segal and R. Sharan. A discriminative model
for identifying spatial cis-regulatory modules. In
Proc. of the Eighth Annual International Conf. on
Computational Molecular Biology (RECOMB),
pages 141-149. ACM Press, 2004.

Y. Yuan, L. Guo, L. Shen, and S. Liu. Predicting
gene expression from sequence: A reexamination.

PLoS Comput Biol, 3(11):e243, Nov 2007.

Q. Zhou and W. H. Wong. CisModule: De
novo discovery of cis-regulatory modules by hier-
archical mixture modeling. Proc. of the National
Academy of Sciences, 101(33):12114-12119, 2004.

C. B. Z. Zilberstein, E. Eskin, and Z. Yakhini.
Using expression data to discover RNA and DNA
regulatory sequence motifs. In Regulatory Ge-
nomics: RECOMB 2004 International Workshop.
Springer-Verlag, New York, NY, 2004.

