
Observation Subset Selection as Local Compilation
of Performance Profiles

Yan Radovilsky

Computer Science Dept.
Ben-Gurion University

84105 Beer-Sheva, Israel
yanr@cs.bgu.ac.il

Solomon Eyal Shimony

Computer Science Dept.
Ben-Gurion University

84105 Beer-Sheva, Israel
shimony@cs.bgu.ac.il

Abstract

Deciding what to sense is a crucial task,
made harder by dependencies and by a non-
additive utility function. We develop approx-
imation algorithms for selecting an optimal
set of measurements, under a dependency
structure modeled by a tree-shaped Bayesian
network (BN).

Our approach is a generalization of compos-
ing anytime algorithm represented by con-
ditional performance profiles. This is done
by relaxing the input monotonicity assump-
tion, and extending the local compilation
technique to more general classes of perfor-
mance profiles (PPs). We apply the extended
scheme to selecting a subset of measurements
for choosing a maximum expectation variable
in a binary valued BN, and for minimizing
the worst variance in a Gaussian BN.

1 Introduction

A typical diagnostic system consists of two types of
variables: tests (observable) and hypotheses (unob-
servable), with statistical dependencies among vari-
ables. Each test, if performed, consumes resources
(time or money), and provides a measurement of one
or more test variables. After obtaining the values of
the selected tests, the distribution of the model is up-
dated. An objective function specifies a reward given
to the system for the posterior distribution. The sys-
tem should make its selection so as to optimize the
objective function, a hard problem in the general case.
Observation subset selection (OSS) is a restricted ver-
sion of this problem, where all measurements must be
selected in advance, prior to any observations. In this
paper we develop approximation algorithms for some
settings of the OSS problem for tree-shaped depen-
dency structures.

To tackle this problem we present OSS as a variant
of the following well-known meta-reasoning problem.
In systems composed of several computational compo-
nents (CCs), the meta-level controller should reason
about allocation of available computational resources
for different CCs in order to optimize the overall per-
formance of the entire system. This task is usually
referred to in the research literature as the meta-level
resource allocation (MRA) problem (see for example
[11]). The standard approach used to optimize the
MRA task was proposed by S. Zilberstein [10, 11, 12],
the technique of local compilation (LC). This technique
is applied to individual CCs, represented in a form
of conditional performance profiles, and generates the
optimal time allocation scheme for the entire system
(see Section 2). However, local compilation requires
the input monotonicity assumption and is, therefore,
restricted to deterministic performance profiles with
scalar output quality.

In this paper we relax the input monotonicity assump-
tion and extend the LC technique to more general
classes of PPs. We then apply the extended approxi-
mation scheme (Section 4) to find an approximate solu-
tion to the OSS problem, under two settings, both for
dependencies modeled as a tree-shaped BN: a) finding
a maximum expectation variable in a binary valued
BN (Section 4.1), and b) minimizing the worst vari-
ance in a Gaussian BN (Section 4.2).

2 Background

Flexible computation refers to procedures that allow
a graceful trade-off to be made between the quality
of results and allocation of costly resources, such as
time, memory, or information [3]. Since time is usu-
ally the main computational resource, there are several
alternative terms used for reference to flexible compu-
tation in the research literature: continual computa-
tion [4, 5], anytime computation [8], and anytime al-
gorithms [1, 10, 12].

To predict the quality of the result which depends on
the amount of allocated time, a statistical model called
a performance profile (PP) is employed. The most sim-
ple version of such a PP called an expected performance
profile (EPP), a mapping from consumed time to an
expected result quality, Q : T→ Q. Given anytime al-
gorithm A described by EPP QA and time-dependent
utility function U : T ×Q → R, optimal time alloca-
tion t∗ can be derived as follows:

t∗ = arg max
t
U(t, QA(t)) (1)

When an algorithm operates with some inexact inputs,
the quality of its result may also strongly depend on
the quality of the inputs. To address this point, a
more flexible model, known as a conditional perfor-
mance profile (CPP), is used. For example, an any-
time algorithm with 2 inputs and one output can be
represented by a CPP Q : T×Q2 → Q.

Figure 1: Composition graph

In a complex system, several CCs (or anytime algo-
rithms) can be composed to achieve a required result.
In this case, their PPs should be compiled in order to
obtain an appropriate performance prediction for the
entire system. Such a system is usually described in
a graphical form by a directed acyclic graph (DAG),
where each node corresponds to a single CC and is
associated with an appropriate PP, while edges rep-
resent dependencies between input/output qualities of
different CCs (Figure 1). This model is referred to as
a composition graph (CG).

A time allocation scheme (TAS) t̂ ∈ Tn specifies allo-
cation of time for each of n elementary CCs of a com-
posite system. Output quality of the whole system can
be expressed as a function of a TAS in a form of com-
posite expression (CE) φ : Tn ×Qk → Q, where k is
a number of external inputs. For example, the system
in figure 1 has the following CE:

φ(t̂, qin) = Q1([t̂]1, Q2([t̂]2, Q3([t̂]3, qin)), Q3([t̂]3, qin))

The MRA problem for a composite system is to opti-
mize a time-dependent utility function by selecting an
appropriate TAS. Formally, given a composite system
represented by CE φ, external input quality qin, and
utility function U , the goal is to find TAS t̂∗ ∈ Tn

which maximizes the utility:

t̂∗ = arg max
t̂∈Tn

U(‖t̂‖, φ(t̂, qin)), (2)

where operator ‖ · ‖ denotes a summation over all ele-
ments of its argument vector: ‖t̂‖ =

∑

i[t̂]i.

An intuitive approach to tackle the MRA problem has
been proposed in [10]. This approach, called compi-
lation of performance profiles, involves construction of
an appropriate PP for the entire system:

Qc(t, qin) = max
t̂∈Tn:‖t̂‖=t

φ(t̂, qin), (3)

Each entry in Qc is additionally associated with a cor-
responding TAS π(t, qin) = t̂ s.t. φ(t̂, qin) = Qc(t, qin)
and ‖t̂‖ = t.

Once such a model is constructed, the optimal solution
for the MRA problem can be derived from this model
as t̂∗ = π(t∗, qin), where t∗ is the optimal total time
allocation computed using equation 1.

Algorithm 1: method RLC for in-tree shaped com-
posite systems

Input : s - a node in a composition graph.
Output: Composed PP for the subtree rooted in s.
if (Pred (s) = ∅) then

return Qs;
foreach si ∈ Pred (s) do

Let Qc
si
← RLC (si);

Let L← {Qc
si

: si ∈ Pred (s)};
return Compose (Qs, L);

In general, the task of (global) compilation is com-
putationally hard even for approximate solution [10].
However, for some restricted topologies (e.g. trees) S.
Zilberstein [10] proposed an efficient algorithm based
on the local compilation (LC) technique, summarized
as RLC in Algorithm 1. In this technique a compos-
ite PP of each subtree is generated based on the CPP
of its root and composed PPs of all its predecessors.
Method Compose performs the basic composition op-
eration, which results in the following composite PP:

Qc
s(t, q1, . . . , qk) = (4)

max
t0,...,tk∈T:

P

ti=t
Qs(t0, Q

c
s1

(t1, q1), . . . , Q
c
sk

(tk, qk))

where s1, . . . , sk are the predecessors of node s.

For systems, where all CCs are represented by deter-
ministic CPPs, RLC is proved to produce the correct
result (equals to one obtained by global compilation)
when the following assumptions hold:

• A tree-structured CG - each node has only one
output which serves as an input for one successor
node except for the root node, whose output is
the resulting system output.

• Input monotonicity (IM) - the utility function and
all involved CPPs are non-decreasing functions of
input quality, i.e. ∀q ≥ p : Q(t, q) ≥ Q(t, p).

Such restrictive assumptions are required to enable
independent compilation of each subtree followed by
greedy selection of one local TAS for each total allo-
cation without harming optimality of the resulting so-
lution. However, in practice, the IM assumption may
be too restrictive. For example, a diagnostic system
with a dependency model represented by Gaussian BN
and a utility function depending on posterior marginal
precision of several hypothesis nodes, violates this as-
sumption. In this work we propose an extension to the
CPP model, which allows relaxing the IM assumption.

Recent work exists in another line directly related to
the OSS task. In [7] the authors proved that the OSS
problem is NPPP -hard even for tree-structured BNs.
They proposed a polynomial time algorithm, based on
dynamic programming, which constructs an optimal
solution to a version of OSS restricted to chain topol-
ogy, exact observation, and additive reward. In [9] a
similar technique was used beyond the exact observa-
tion assumption, and determined a theoretical bound
for the worst-case loss in expected reward. Our work
can be seen as an extention of the latter research. An-
other approximation method based on greedy selection
of test nodes is applicable when the reward function
exhibits property of sub-modularity [6].

3 Generalized Local Compilation

This section generalizes the notion of a performance
profile to a reachable performance profile, and adapts
the LC technique to handle the extended model.

Definition 3.1 (Conditional performance). Condi-
tional performance (CP) of a CC (either elementary
or composite) is a tuple (t̂, p, q), where t̂ is a local
TAS (t-component), p is a required input quality (p-
component), and q is an expected output quality, ob-
tained by the CC when applied to inputs of quality p

with TAS t̂ (q-component).

Either p or q may be represented by scalars or by vec-
tors, while t̂ is assumed to be a complete assignment
of time allocations to all CCs of the system.

Definition 3.2 (Reachable performance profile).
Reachable performance profile (RPP) of a CC is a set
of CPs achievable by this CC.

The RPP model can be derived from a CPP as follows:

RA = {(πA(t, p), p,QA(t, p))}, (5)

where QA is a CPP, and RA is an appropriate RPP.
The converse is not always possible, because a RPP

can contain more than one output quality for the same
pair of total time allocation and input quality (each
with a different local TAS).

We further extend our model by allowing backward
conditioning, which means that output quality of a
CC may depend on output quality of its succes-
sor. The general form of a CP in this case is
(t̂, (psuc, ppred), (qsuc, qpred)), where the p-component
has two parts: psuc is a required output quality of
the successor, and ppred is a vector of required out-
put qualities of all the predecessors; the q-component
has two parts as well: an output quality towards its
successor (qsuc), and a vector of qualities towards all
its predecessors (qpred). Such a form of CPs is useful
in applications for BNs, where posterior probability
distribution of a node (and its local reward) depends
on the messages coming from all its neighbors (details
appear in section 4).

In order to adapt the RLC algorithm to the extended
settings, we need to modify the Compose method.
This method is now applied to a list of profiles in the
RPP representation, and its output should be in the
RPP form as well. Moreover, the greedy selection re-
flected in the max operator in equation 3 strongly re-
lies on the IM assumption. Since this assumption fails
in the RPP case, we propose another approach. The
composition process comprises two parts: the first part
(Construct) considers all combinations of input CPs,
and collects appropriate resulting CPs.

Q = {(t̂0 + t̂1 + . . .+ t̂k, p0, q0) : (t̂i, pi, qi) ∈ Qsi
,

(t̂0, (p0, q1, . . . , qk), (q0, p1, . . . , pk)) ∈ Qs}. (6)

The second part, called Purge is applied to the set
Q. Purge exploits domination and equivalence among
reachable CPs in order to filter out irrelevant CPs.1

The idea of pruning irrelevant CPs is very similar to
one used in the Incremental Pruning algorithm [2] for
filtering irrelevant α-vectors. The resulting RPP Qc

keeps one representative for each CP in Q:

∀a ∈ Q ∃b ∈ Qcs.t. (b ≻ a) ∨ (b ≈ a).

where ≻ and ≈ are domination and equivalence op-
erators respectively. These operators can be defined
based on partial orders within each performance com-
ponent. Assuming only a natural partial order in the
t-component we obtain:

(t̂, p, q) ≈ (t̂′, p′, q′)⇔ (‖t̂‖ = ‖t̂′‖)∧ (p
P
≈ p′)∧ (q

Q
≈ q′)

and

(t̂, p, q) ≻ (t̂′, p′, q′)⇔ (‖t̂‖ < ‖t̂′‖)∧ (p
P
≈ p′)∧ (q

Q
≈ q′)

1The filtering can be applied after Construct termi-
nates, but it is usually more efficient to perform filtering
on-the-fly.

where
P
≈ and

Q
≈ are equivalence operators defined over

the p and q components, respectively.

4 Observation Selection in BNs.

In this section we describe how our framework can be
applied to OSS in BNs. We use the following notation:

• X = {Xi : 1 ≤ i ≤ n} - set of all state variables;

• XH ⊆ X - set of hypothesis state variables;

• XM ⊆ X - set of measurable state variables;

• Y = {Yi : Xi ∈ XM} - set of test variables;

• N - BN over X ∪Y;

• R : Pr(XH)→R - reward function;

• T (E) =
∑

Yi∈E τi - additive time consumption;

• B - time budget (maximum time for observation).

Definition 4.1 (OSS optimization problem).
The OSS optimization problem is: given a tuple
(N,R, T,B), select a subset of observation variables
E ⊆ Y which maximizes the expected reward:

R̂(XH |E) =
∑

e∈Dom(E)

Pr(E = e)R(XH |E = e) (7)

subject to the budget limit T (E) ≤ B.

Figure 2: Out-tree BN topology.

We assume BNs with an out-tree shaped dependency
graph rooted in nodeX1 (as shown in figure 2). Let XI

s

denote a subset of X, which consists of all nodes Xi in
the subtree rooted in Xs (all descendants of Xs includ-
ing Xs itself), and let E ⊆ Y be any given subset of
observation (“evidence”) nodes. We use the following

notation to refer to other relevant subsets of nodes:

XO
s = X \XI

s ;

YI
s = {Yi : Xi ∈ (XM ∩XI

s)};

YO
s = Y \YI

s ;

EI
s = E ∩YI

s ;

EO
s = E ∩YO

s .

4.1 OSS in discrete BNs

We now apply our approach to OSS in tree-shaped
BNs with discrete variables. Since solving this problem
for the general setting (even for the tree-structured
topology) is proved to be NPPP -hard [7], we restrict
our focus to BNs with boolean variables (Dom(Xi) =
Dom(Yi) = {0, 1}), and consider the following reward
function, defined for an arbitrary set of nodes A:

R(A|E = e) = max
Xi∈A

Ri(Xi|E = e),

where eachRi : Pr(Xi)→R is a local reward function:

Ri(Xi|E = e) =

{

Pr(Xi = 1|E = e) : if(Xi ∈ XH),

0 : otherwise.

(8)
We refer to this version of OSS as Boolean OSS
(BOSS).

The BN can be specified by the following parameters:

αi =

{

Pr(Xi = 1) : if Xi is a root,

Pr(Xi = 1|XPrev(i) = 1) : otherwise;

βi =

{

Pr(Xi = 1) : if Xi is a root,

Pr(Xi = 1|XPrev(i) = 0) : otherwise;

θi =

{

Pr(Yi = 0|Xi = 1) : if(Xi ∈ XM),

1 : otherwise;

ζi =

{

Pr(Yi = 1|Xi = 0) : if(Xi ∈ XM),

0 : otherwise;

We make the following simplifying assumptions about
the involved observation process:

1. Probability of a false positive observation result
for all nodes is bounded by a small constant ζmax

(that is ∀i : ζi ≤ ζmax);

2. Only hypothesis nodes have directly attached ob-
servations (XM ⊆ XH).

Henceforth this set of assumptions is called the re-
stricted false positive property. In the extreme case
(ζmax = 0) we get a false-positive-free observation pro-
cess. Despite the relatively restricted setting, we have
the following complexity result:

Theorem 1 (Hardness of BOSS). Finding an exact
solution to the BOSS problem is NP-hard even when
all state variables are independent (αi = βi) and all
observations are exact (θi = ζi = 0).

Proof is by reduction from Knapsack, which is a well-
known NP -complete problem. Below, we show how
the BOSS problem can be reduced to a special case
of MRA and then solved (approximately) by the RLC
algorithm.

In order to apply the RLC algorithm we must specify
the problem in terms of a composite system. Deriving
the corresponding CG is straightforward: the graph
has in-tree form and can be obtained from the depen-
dency graph by simply reversing directions of all arcs.

Careful inspection of the false-positive-free property
yields that observing one positive value at any obser-
vation node (Yi = 1) provides a sufficient evidence for
determining the reward value (R(XH |Yi = 1, E = e) =
Ri(Xi|Yi = 1) = 1), regardless of other observations.
We employ this fact to obtain a recursive decomposi-
tion of the expected reward.

We specify output quality (q-component) of exploring
subset E ⊆ Y w.r.t. subtree XI

s as the triple (f, g, r):

f = Pr(êI
s|Xs = 1),

g = Pr(êI
s|Xs = 0),

r = R(XI
s|ê),

where ê, êI
s, and êO

s denote assignments of all zeros to
E, EI

s , and EO
s respectively. While f and g compo-

nents depend only on observations inside the subtree
(êI

s), to determine the value of the r-component we
need additional information from outside the subtree,
provided by the p-component: p = Pr(Xs = 1|êO

s).

For each quality component we define one correspond-
ing domain set (of relevant values):

Ps =
{

Pr(Xs = 1|EO
s = êO

s) : E ⊆ Y
}

Fs =
{

Pr(EI
s = êI

s|Xs = 1) : E ⊆ Y
}

Gs =
{

Pr(EI
s = êI

s|Xs = 0) : E ⊆ Y
}

Rs =
{

R(XI
s|E = ê) : E ⊆ Y

}

.

We also define combined domain sets Qs = Fs×Gs×
Rs. Finally, all alternative assignments to a number of
observations (measurements) in nodeXs is represented
by set Ms. In the basic OSS setting we have at most
one observation per node:

Ms =

{

{0, 1} : if (Xs ∈ XM),

{0} : otherwise.

However, the model can be easily extended to multiple
observations (by specifying appropriate Ms sets).

RPPs of observation nodes contain CPs with no con-
dition (denoted by ∅ in the p-component):

QY
s = {(mτ̂s, ∅,m) : m ∈Ms}, (9)

where τ̂s is an assignment of τs time units to s and 0
to all the other CCs.

All leaf X-nodes are associated with RPPs of the fol-
lowing form:

QX
s = {(0̂, u, ψs(u)) : u ∈ Ps ×Ms} (10)

where 0̂ denotes a zero time allocation (to all CCs),
and ψs : Ps ×Ms → Qs is a vector function defined
as follows:

ψs(p,m) = (f, g, r), (11)

f = Pr(êI
s|Xs = 1) = θm

s ,

g = Pr(êI
s|Xs = 0) = (1− ζs)

m,

r = Rs(Xs|ê) =

{

pf
L(f,g,p) : if (Xs ∈ XH),

0 : otherwise

In our notation L(·, ·, ·) stands for the operator of lin-
ear interpolation defined as follows:

L(a, b, c) = ca+ (1− c)b. (12)

RPP of any non-leaf node Xs with k children
(Xs1

, . . . , Xsk
) is specified as follows:

QX
s = {(0̂, u, ψs(u)) : u ∈ Ps×Ms×Qs1

× · · · ×Qsk
}

(13)
where
ψs : Ps×Ms×Qs1

×· · ·×Qsk
→ Qs×Ps1

×· · ·×Psk

is a vector function defined as follows:

ψs(p,m, (f1, g1, r1), . . . , (fk, gk, rk)) = (14)

= ((f, g, r), p1, . . . , pk),

r = max{r0, r1, . . . , rk},

r0 = Rs(Xs|ê) =

{

pf
L(f,g,p) : if (Xs ∈ XH),

0 : otherwise

f = Pr(êI
s|Xs = 1) = θm

s

∏

1≤i≤k

f ′
i ,

g = Pr(êI
s|Xs = 0) = (1− ζs)

m
∏

1≤i≤k

g′i,

pi = Pr(Xsi
= 1|êO

si
) =

=
L(αsi

, βsi
, pθm

s

∏

j 6=i f
′
j)

L(θm
s

∏

j 6=i f
′
j, (1− ζs)

m
∏

j 6=i g
′
j , p)

,

f ′
i = Pr(êI

si
|Xs = 1) = L(fi, gi, αsi

),

g′i = Pr(êI
si
|Xs = 0) = L(fi, gi, βsi

).

While all QY
s RPPs can be specified explicitly (as a list

of CPs), the QX
s RPPs generally cannot, due to a pos-

sibly exponential size of domains Ps, Fs, Gs and Rs

in their input condition. Instead, we represent them
in an implicit form by providing (parameters of) the
involved ψs functions.

During the compilation process (according to the RLC
algorithm) method Compose is applied to lists of
RPPs. At each application one composed RPP Qc

s

(which represents the whole subtree XI
s) is generated.

Due to backward conditioning on elements of Ps which
can contain exponential number of elements), such a
RPP cannot be derived exactly (and explicitly). There
is also no obvious way to specify it implicitly by pro-
viding some predefined functions (as we do in case of
individual RPPs). To address this problem, we pro-
pose to approximate all Ps sets by one uniform grid
Dp defined as follows:

Dp =

{(

k +
1

2

)

ǫp : k ∈ 0, . . . , dp − 1

}

(15)

where 0 < ǫp < 1 is a small constant, and dp =
⌈

1
ǫp

⌉

is a number of intervals of size ǫp in the range [0, 1].
Thus, set Dp has a fixed number of elements (dp) which
makes efficient enumeration possible.

We define discretization function λp, which maps any
value p ∈ Ps to an appropriate point in set Dp:

λp(p) =

(⌊

p

ǫp

⌋

+
1

2

)

ǫp (16)

This discretization induces approximate equivalence

relation
P
≈ among elements of Ps defined as follows:

p
P
≈ p′ ⇔ λp(p) = λp(p

′) (17)

We apply a similar discretization technique to other
domain sets (Fs, Gs, and Rs) with discretization steps
ǫf , ǫg and ǫr respectively. The appropriate grids (Df ,
Dg, Dr), discretization functions (λf , λg, λr) and

equivalence operators (
F
≈,

G
≈,

R
≈) are defined accord-

ingly. The composed equivalence operator
Q
≈ is defined

as follows:

(f, g, r)
Q
≈ (f ′, g′, r′)⇔ (f

F
≈ f ′) ∧ (g

G
≈ g′) ∧ (r

R
≈ r′)

To complete the specification, we define the following
comprehensive utility function:

U(t̂, p, (f, g, r)) = (18)

=

{

L(r, 1, L(f, g, α1)) : if (p
P
≈ α1 ∧ ‖t̂‖ ≤ B),

−∞ : otherwise,

After compiling RPPs of the entire tree, the result-
ing RPP Qc

1 can be used to select a near-optimal TAS
w.r.t. this utility function. Let E∗ denote the optimal
observation subset, and let E be a subset correspond-
ing to the TAS selected based on the resulting RPP.

Theorem 2 (Approximation quality of RLC for
BOSS). The RLC algorithm applied to a transformed
instance of BOSS with out-tree topology and a re-
stricted false positive observation process approximates
the optimal solution within additive factor of ∆u,
which is bounded as follows:

∆u = R̂(X|E∗)− R̂(X|E) ≤ hǫp + 2nǫs + ǫr + nζmax

(19)
where h is a height of the tree, and ǫs = max{ǫf , ǫg}.

Selection of the appropriate values for the grid steps
depends on the required precision of the solution. To
ensure approximation with ∆u ≤ ǫ+ nζmax (in worst
case) we can select ǫp = ǫ

3h
, ǫf = ǫg = ǫ

6n
, and ǫr = ǫ

3 .

Due to monotonicity in total time, any composed RPP
can be represented by the 4-dimensional table (Dp ×
Df ×Dg × Dr), where each entry is associated with
at most one appropriate partial TAS. The number of
entries (CPs) in such a table is bounded as follows:

|Qc
s| ≤ dpdfdgdr =

⌈

3h

ǫ

⌉⌈

6n

ǫ

⌉2 ⌈

3

ǫ

⌉

. (20)

Worst-case complexity for the complete run of RLC is

O
(

n4

ǫ4

)

time, O
(

n3

ǫ4

)

space for a chain topology, and

O
(

n2c+1hc
ǫ2c+2

)

time, O
(

n2ch2c
ǫ2c+2

)

space for a tree with a

maximum branching factor of c.

4.2 OSS in Gaussian Bayesian networks

Gaussian Bayesian network (GBN) is a special case of
BN, where the conditional probability distributions of
the variables are Normal (Gaussian) distributions:

Xi|Pa(Xi) ∼ N



µi +
∑

Xj∈Pa(Xi)

ai,j(Xj − µj), σ
2
i





We parametrize our GBN model as follows:

αi = a2
i,Prev(i),

βi = Prec(Xi|XPrev(i)) =
1

σ2
i

,

θi =

{

Prec(Yi|Xi) : if (Xi ∈ XM),

0 : otherwise.

In our notation Prec(·) denotes the precision operator,
which is reciprocal to variance:

Prec(Xi|E) =
1

V ar(Xi|E)
. (21)

For Gaussian OSS (GOSS) we consider the following
reward function:

R(A|E = e) = min
Xi∈A

Ri(Xi|E),

where Ri : Pr(Xi)→R are local reward functions:

Ri(Xi|E) =

{

loga,b(Prec(Xi|E)) : if(Xi ∈ XH),

1 : otherwise.

(22)
Here a and b are two parameters that determine a
range of distinguishable (for reward) values of preci-
sion, and loga,b(·) denotes a normalized (and truncated
at its extreme points) log operator, defined as follows:

loga,b(p) =











0 : if (p ≤ a),

1 : if (p ≥ b),
log p−log a
log b−log a

: otherwise.

(23)

Theorem 3 (Hardness of GOSS). Finding an exact
solution for a general instance of the GOSS problem is
NP-hard even for a tree-shaped GBN.

Proof is by reduction from Knapsack. A polynomial
scheme for approximate solution of GOSS, similar to
one presented for BOSS, follows.

To apply the RLC algorithm we specify the problem in
terms of a composite system. The CG is as for BOSS.
All domain sets (except for Ms, that remain the same)
should be redefined as follows:

Ps = {Prec(Xs|E
O
s) : E ⊆ Y}, (24)

Fs = {Prec(Xs|E
I
s) : E ⊆ Y}, (25)

Rs = {Rs(Xs|E) : E ⊆ Y}, (26)

Qs = Fs ×Rs. (27)

We need to reformulate, in the definition of RPPs, the
specification of the ψs functions. For the leaf nodes ψs

is defined as follows:

ψs(p,m) = (f, r), (28)

f = Prec(Xs|E
I
s) = mθs,

r = Rs(Xs|E) =

{

loga,b(p+ f) : if (Xs ∈ XH),

1 : otherwise,

For the non-leaf nodes we have:

ψs(p,m, (f1, r1), . . . , (fk, rk)) = ((f, r), p1, . . . , pk);

f = Prec(Xs|E
I
s) = mθs +

∑

1≤i≤k

f ′
i ,

r = min{r0, r1, . . . , rk},

r0 = Rs(Xs|E) =

{

loga,b(p+ f) : if (Xs ∈ XH),

1 : otherwise,

pi = Prec(Xsi
|EO

si
) = J(βsi

, αsi
(mθs + p+

∑

j 6=i

f ′
j)),

f ′
i = Prec(Xs|E

I
si

) =
J(fi, βsi

)

αsi

, (29)

(30)

In our notation J(·, ·) stands for the operator of pre-
cision propagation defined as follows:

J(a, b) =

{

0 : if (a = b = 0),
ab

a+b
: otherwise.

(31)

As in case of BOSS, to prevent exponential growth of
the composed RPPs we apply discretization to all do-
mains by appropriate grids. Grid Dr and correspond-
ing discretization function λr are defined exactly as in
BOSS. To define Dp we use its projection D′

p to the
[0, 1] interval (D′

p is defined exactly as Dp in the BOSS
case):

Dp = {p : loga,b(p) ∈ D′
p}, (32)

We express the discretization function λp through its
projected version λ′p (which is defined as λp in BOSS):

λp(p) = λ′p(loga,b(p)). (33)

Grid Df and the corresponding discretization function
λf are similarly defined.

Equivalence operators
P
≈,

F
≈, and

R
≈ are defined as in

BOSS. The composed equivalence operator
Q
≈ is:

(f, r)
Q
≈ (f ′, r′)⇔ (f

F
≈ f ′) ∧ (r

R
≈ r′)

The comprehensive utility function is as follows:

U(t̂, p, (f, r)) =

{

r : if ((p
P
≈ β1) ∧ (‖t̂‖ ≤ B)),

−∞ : otherwise

(34)

After compiling the composite system (using the RLC
algorithm), a near-optimal TAS can be selected from
the resulting RPP Qc

1 w.r.t. this utility function. Let
E∗ denote an optimal observation subset, and E a sub-
set corresponding to the TAS selected from Qc

1.

Theorem 4 (Approximation quality of RLC for
GOSS). The RLC algorithm applied to a transformed
instance of GOSS problem with out-tree topology ap-
proximates the optimal solution E∗ within additive fac-
tor of ∆u, bounded as follows:

∆u = R̂(XH |E
∗)− R̂(XH |E) ≤ hǫp + hǫf + ǫr (35)

To ensure approximation with ∆u ≤ ǫ (in worst case)
we can select ǫp = ǫf = ǫ

h
, and ǫr = ǫ.

Any composed RPP Qc
s can be represented by a 3-

dimensional (Dp ×Df ×Dr) table with a number of
entries bounded as follows:

|Qc
s| ≤ dpdfdr =

⌈

h

ǫ

⌉2 ⌈

1

ǫ

⌉

. (36)

The appropriate worst-case complexity for the com-

plete run of the RLC algorithm is O
(

nh2

ǫ2

)

time,

O
(

h2

ǫ3

)

space for a chain topology, and O
(

nhc+1c
ǫc+2

)

time, O
(

hc+2c
ǫc+2

)

space for a tree with maximum

branching factor of c.

5 Summary

In this paper we extended the concept of CPP, and pre-
sented an efficient technique for compiling a compos-
ite system beyond the input monotonicity assumption.
The extended scheme has been applied to optimizing
a set of measurements in two different settings (for
choosing a maximum expectation variable in a binary
valued BN, and for minimizing the worst variance in
a Gaussian BN). Polynomial time methods have been
presented for both problems, and quality of approxi-
mation has been theoretically determined.

Applying our framework to real-world domains as an
empirical evaluation is underway. Further extend-
ing the framework to deal with more general system
topologies, tractable strategies for active monitoring
are possible directions for future research.

Acknowledgements

Partially supported by the IMG4 consortium (un-
der the Ministry of Industry, Trade and Labor of Is-
rael MAGNET program), by the Lynn and William
Frankel Center for Computer Sciences, and by the Paul
Ivanier Center for Robotics.

References

[1] M. Boddy and T. Dean. Solving time-dependent
planning problems. In IJCAI, pages 979–984,
1989.

[2] A. Cassandra, M. L. Littman, and N. L. Zhang.
Incremental Pruning: A simple, fast, exact
method for partially observable Markov decision
processes. In Proceedings of (UAI–97), pages 54–
61, 1997.

[3] E. Horvitz. Reasoning about beliefs and ac-
tions under computational resource constraints.
In UAI, pages 301–324, 1987.

[4] E. Horvitz. Models of continual computation. In
AAAI/IAAI, pages 286–293, 1997.

[5] E. Horvitz. Continual computation policies for al-
locating offline and real-time resources. In IJCAI,
pages 1280–1287, 1999.

[6] A. Krause and C. Guestrin. Near-optimal non-
myopic value of information in graphical models.
In UAI, pages 324–331, 2005.

[7] A. Krause and C. Guestrin. Optimal nonmyopic
value of information in graphical models - efficient
algorithms and theoretical limits. In IJCAI, pages
1339–1345, 2005.

[8] A. I. Mouaddib and S. Zilberstein. Knowledge-
based anytime computation. In IJCAI, pages
775–783, 1995.

[9] Y. Radovilsky, G. Shattah, and E. S. Shimony. Ef-
ficient deterministic approximation algorithm for
nonmyopic value of information in graphical mod-
els. In SMC Conference, Taipei, Taiwan, 2006.

[10] S. Zilberstein. Operational rationality through
compilation of anytime algorithms. Technical re-
port, Computer Science Division, University of
California at Berkeley, 1993. PhD Dissertation.

[11] S. Zilberstein. Optimizing decision quality with
contract algorithms. In IJCAI, pages 1576–1582,
1995.

[12] S. Zilberstein. Using anytime algorithms in intel-
ligent systems. AI Magazine, 17(3):73–83, 1996.

