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Abstract

In this work we present Cutting Plane Infer-
ence (CPI), a Maximum A Posteriori (MAP)
inference method for Statistical Relational
Learning. Framed in terms of Markov Logic
and inspired by the Cutting Plane Method,
it can be seen as a meta algorithm that in-
stantiates small parts of a large and complex
Markov Network and then solves these using
a conventional MAP method. We evaluate
CPI on two tasks, Semantic Role Labelling
and Joint Entity Resolution, while plugging
in two different MAP inference methods: the
current method of choice for MAP inference
in Markov Logic, MaxWalkSAT, and Integer
Linear Programming. We observe that when
used with CPI both methods are significantly
faster than when used alone. In addition,
CPI improves the accuracy of MaxWalkSAT
and maintains the exactness of Integer Linear
Programming.

1 INTRODUCTION

Many tasks in Machine Learning are inherently rela-
tional: the label given to an object often depends on
labels given to a set of related objects. For example,
in Semantic Role Labelling [Carreras and Marquez,
2005] we are asked to label phrases with the role they
play with respect to a given verb. Here the role given
to one phrase depends on roles we have assigned to
other phrases in the same sentence. It is, for instance,
not possible to have two phrases both labelled as the
agent of the same verb.

Statistical Relational Learning [SRL, Ng and Subrah-
manian, 1992, Koller, 1999] seeks to provide generic,
solid and efficient means to solve such relational tasks.
It typically uses variants of First Order Logic to
describe Graphical Models with repetitive structure
in a compact fashion. This has two main benefits.

Firstly, the meta-information provided by the first or-
der model can be used to avoid a full instantiation of
the Graphical Model in inference and learning. This
can yield faster runtime and higher accuracy [Koller,
1999, de Salvo Braz et al., 2005, Singla and Domin-
gos, 2006b]. Secondly, an SRL language along with a
powerful interpreter allows application developers to
focus on models, and machine learning researchers to
focus on foundations. This paradigm of decoupling ap-
plications and algorithms has increased the speed of
development in many domains [Domingos, 2006].

Markov Logic [ML, Richardson and Domingos, 2005]
is an expressive SRL language that combines First Or-
der Logic and Markov Networks. It has been success-
fully used for several tasks such as Information Ex-
traction [Poon and Domingos, 2007] and Entity Reso-
lution [Singla and Domingos, 2006a].

For most Markov Logic applications we need to solve
the Maximum A Posteriori (MAP) problem of find-
ing the most likely solution given some observation.
Richardson and Domingos [2005] proposed the use of
MaxWalkSAT [MWS, Kautz et al., 1996] to tackle this
problem. In our experiments we apply MWS to two
rather simple ML models, one for Semantic Role La-
belling and one for Joint Entity Resolution. Here we
found MWS to be both slow and inaccurate. However,
before languages like ML can ever be used to solve
tasks like joint inference in large Natural Language
Processing applications [Domingos, 2007] we surely
need to able to efficiently and accurately solve com-
paratively simple ones.

Rather than investigating the use of other solvers such
as Belief Propagation and its variants, which can per-
form quite poorly for the large, densely connected and
partially deterministic networks we encounter, we fo-
cus on tackling this problem by introducing a meta
algorithm: Cutting Plane Inference (CPI) inspired by
the Cutting Plane Method [Dantzig et al., 1954].

CPI incrementally instantiates only those portions of
the complete Markov Network for which a current so-
lution can be further optimised and solves these using



an existing inference method. Often these partial prob-
lems are significantly smaller and less complex. Conse-
quently, they are more easily solved than the complete
problem.

Empirically we show that for Semantic Role Labelling
CPI plus MWS is significantly faster and more accu-
rate than MWS alone. When used with Integer Lin-
ear Programming (ILP), CPI achieves optimal accu-
racy due to the exactness of ILP, yet runs significantly
faster than when using ILP alone. With this accuracy
we are able to achieve state-of-the-art results in Se-
mantic Role Labelling with minimal engineering ef-
fort. When tested on an Joint Entity Resolution model
taken from from the Markov Logic literature [Singla
and Domingos, 2005] CPI with MWS does again better
than MWS alone both in terms of speed and accuracy.
CPI with ILP allows us to perform efficient and ezact
inference on this task while ILP alone is infeasible.

In the next section of this paper we will present
Markov Logic. Section 3 shows two ways of solving the
MAP problem for the Markov Networks that Markov
Logic describes: MWS and ILP. In section 4 Cutting
Plane Inference is presented and we formally show how
the accuracy of CPI depends on the accuracy of the
base solver. Section 5 compares CPI in combination
with MWS and ILP to plain MWS and ILP on two
tasks. The first is Semantic Role Labelling, the second
Joint Entity Resolution. We conclude with section 6.

2 MARKOV LOGIC

Markov Logic [ML, Richardson and Domingos, 2005]
is an SRL language based on First Order Logic and
Markov Networks. It can be seen as a formalism that
extends First Order Logic to allow formulae that can
be violated with some penalty. From an alternative
point of view, it is a expressive template language that
uses First Order Logic formulae to instantiate Markov
Networks of repetitive structure. !

Let us introduce some notation by example. Assume a
simplified version of Semantic Role Labelling where we
use an unary predicate agent to select the constituent
that acts as agent for a given verb. We also maintain
a set of additional predicates that provide information
about constituents and their relation to the verb. For
example, left can be a unary predicate that denotes
constituents to the left of the verb. The set of all pred-
icates will be called P. We also maintain a finite set
C of constants representing constituents, words, tags
etc.

In the following we will use n, to denote the arity of a

Note that while this paper focuses on Markov Logic
due to its expressive power and possibility of undirected
dependencies, we note that much of the work reported here
can be transferred to other formalisms.

predicate p, and thus njep = Nagens = 1. In formulae
we will denote logical variables using the letter v and
some subscript such as v1. For example, in

o1 : agent (v1) = left (v1)
v1 is a variable and in
¢2 1 v1 # va2 A agent (v1) = —agent (va)

vy and vy are variables. The number of free variables
of a formula ¢ will be denoted with ng, thus ng, =1
and ng, = 2. A grounding ¢ [Ul/cl,...7vn¢/cn¢] is
generated by replacing each occurrence of each v; with
the constant ¢;. We will often write ¢ [v/c] to mean
1) [Ul/cl, .. "U%/c%] For example, ¢35 [v/c] = ¢1 #
c2 A agent (c1) = —agent (c2).

A formula that does not contain any variables is
ground. A formula that contains a single predicate and
nothing else is an atom. A set of ground atoms is called
a possible world [Genesereth and Nilsson, 1987]. We
say that a possible world W satisfies a formula ¢ and
write Fy ¢ if ¢ is true in W. For example, the possible
world {agent (¢1)} does not satisfy ¢y [v1/c1]; the pos-
sible world {left (¢1), agent (c1)} does. In the following

we will identify the binary vector y = (yp(c) pEP.ceCmp

with the possible world {p (c) [y,(c) = 1}. For the sake
of brevity we will often write y instead of y,c). The
set of all possible worlds we can construct using a set
of predicates P and a set of constants C' is Vp c.

In First Order Logic a knowledge base is a set of for-
mulae. It describes the set of possible worlds that for
which all its formulae are satisfied. In Markov Logic
the equivalent of a first order knowledge base is a
Markov Logic Network (MLN). Instead of classifying
models as either consistent (all formulae are satisfied)
or inconsistent (some are not) an MLN maps each pos-
sible world to a probability. This allows us to model
uncertainty in our beliefs about the world. For exam-
ple, a world in which agent (¢1) = left (¢c1) does not
hold should not be impossible, it should just be a bit
less likely because the agent of a verb tends to be on
its left but can appear on its right in passive construc-
tions.

We define an MLN M as set of pairs {(¢;, w;)}; where
each ¢; is a formula in First Order Logic and w; € R
is a real number. Together with a finite set of con-
stants C', an MLN M defines a log-linear probability
distribution over possible worlds y € Vp ¢ as follows

r=en| X ow Y gy O
(pw)EM  ceC™?

where the feature function f¢ is defined as

ff (y) :H(l:y 10) [vl/cl,...,v,L¢/cn¢])



Z is a normalisation constant, I(true) = 1 and

I (false) = 0.

This distribution is strictly positive and corresponds to
a Markov Network which is referred to as the Ground
Markov Network. Note that we can represent hard con-
straints using very large weights.

For example, with M = {(¢1,2.5), (¢2,1.2)} and the
finite set of constants C' = {ny,na,...} that repre-
sent the nodes of the parse tree, the log-linear model
would contain, among others, the feature f¢1 (y) =
I(Fy agent (n1) = left (n1)) that returns 1 if the con-
tained ground formula holds in the possible world y
and 0 otherwise.

3 MAP INFERENCE

In many settings we are given an MLN M and the state
of a set of observed ground atoms (xp(c))peO,ceC"v for
a set of observable predicates O. We are then asked to
find the set of hidden ground atoms y € Yy ¢ for a
set of remaining predicates H = P\ O with maximum

a posteriori probability (MAP)?

arg max p (y|x) = arg max s (y, X)
y€VH,c y€Vu,c

5/:

where

S(y,X) = Z w Z fg) (y,x) (2)

(pw)EM  ceC™¢

can be considered as a linear discriminant or scoring
function that evaluates the goodness of a problem so-
lution pair (x,y).

For example, we might be looking for the truth states
of the H = {agent} atoms while knowing the state
of all O = {left} ground atoms that indicate which
constituents are placed to the left of the verb.

3.1 MAXWALKSAT

Previous work [Richardson and Domingos, 2005] finds
¥ using MaxWalkSAT (MWS), an approximate Ran-
dom Walk method that has been very successfully used
to solve Weighted SAT Problems [Kautz et al., 1996].

It starts by assigning a random state to all ground
atoms and proceeds by repeatedly picking a random
unsatisfied ground clause. With probability ¢ a ran-
dom ground atom of this clause is picked and its state
is flipped. With probability 1 — ¢ the ground atom
which, when flipped, causes the largest increase in to-
tal weight s (y,x) is chosen to be flipped. The pro-
cess is repeated until a fixed number n g, of flips is
reached. Optionally one can try again n,estarts times
to find a better y, each time starting at a new random
solution.

2In the case where multiple maxima exist we can pick
any of these.

3.2 INTEGER LINEAR PROGRAMMING

Integer Linear Programming [ILP, Winston and
Venkataramanan, 2003] refers to the process of opti-
mising a linear objective function under a set of linear
inequalities and the constraint that all (or some) vari-
ables are integers. ILP has been used in many tasks to
solve MAP problems [Roth and Yih, 2005, Clarke and
Lapata, 2007] because of its exactness, its declarative
nature and the availability of very efficient ILP solvers.

Here we present a generic mapping from Ground
Markov Networks in Markov Logic to ILPs.? We start
by replacing each feature function application f¢ (y)
in equation 2 with a binary variable A¢ and constrain
f¢ (y) and A¢ to be equal. This leads to the optimisa-
tion problem

arg max
YEVH,C

> w ) X

(p,w)EM  ceC™o
s.t 2\ = £ (y,x)V (¢,w) € M,c € C"™

with a linear objective function under a set of con-
straints.

In order to turn this into an ILP we need to transform
each constraint into a set of linear constraints over y
and the auxiliary variables (A?), _ccn,- This can be
achieved by

1. Mapping each constraint to a logical equivalence
of auxiliary variable and ground formula, such as
Mo & agent (ny) = left (nq)

2. Replacing ground atoms by either true or false if
they are observed or, if not, by their correspond-
ing decision variable, as in
o & ypoent = false

3. Transforming the logical equivalence into Con-
junctive Normal Form4, as in (—\)\21 \/yg?ent) A
(A%, v —wn™)

4. Replacing each disjunction by a linear con-
straint [Williams, 1999], for example
—1.0- A%, + 1.0 - ypoent > 0

Note that we can significantly simplify the above pro-
gram for hard constraints (i.e.., formulae with very
large w) and formulae with only one hidden atom. We
omit details for brevity.

3In general it is always possible to map any Markov
Network to an ILP [Taskar, 2004]. However, our mapping is
tailor-made for Markov Logic and yields smaller programs.

“If the formula contains universal (existential) quanti-
fied formulae we replace these with conjunctions (disjunc-
tions) using the finite set of constants C.



4 CUTTING PLANE INFERENCE

We will show in the empirical section of this paper
that running inference using the full grounding of a
Markov Logic Network can be slow and in the case of
MWS also inaccurate. We will now present an algo-
rithm that tries to overcome this problem by instan-
tiating only portions of the complete Ground Markov
Network and running an off-the-shelf inference method
in this network.

4.1 ALGORITHM

The proposed algorithm is a variant of the Cutting
Plane approach from Operations Research [Dantzig
et al., 1954]. Cutting Plane algorithms solve large scale
constrained optimisation problems by only considering
a subset of constraints. In each iteration the solution
to a partial problem is provided to an oracle that re-
turns a set of constraints® the solution violates. The
current problem is extended by these new constraints
and re-solved. The process is repeated until no more
violated constraints can be found.

Instead of searching for violated constraints, Cut-
ting Plane Inference (CPI) searches for feature-weight
products in equation 2 that do not maximally con-
tribute to the overall sum given the current solution.
More precisely, for each formula ¢ and a given (y’,x)
we are looking for all tuples, Separate (¢, w,y,x) C
C"™e for which

w- fE(y',x) <  max w- 12 (y,%) (3)

We will say that the corresponding ground formulae
are not mazimally satisfied in the world y’.

In the terminology of the Cutting Plane method this
step is often referred to as separation: it finds a set
of constraints that separates feasible solution from in-
feasible solutions. In our case this step will help to
separate possible worlds with high score from those
with low score.

It will be useful to define a partial grounding G =
(G¢)(¢7w)eM with G4 C C™¢ that maps each first order
formula ¢ to a set of tuples we ground it with. A partial
grounding induces a partial score

SG (Y>X) = Z w Z fgb (an) (4)

(p,w)eM  c€Gy

CPI proceeds as described in algorithm 1. In each it-
eration i we maintain a partial grounding G'. Initially
GO is filled with a small number of groundings. A nat-
ural choice are all groundings of formulae that only

°In case of linear constraints these constraints form hy-
perplanes that further cut the space of feasible solution,
hence the name.

contain one hidden predicate. In this case maximis-
ing sgo is trivial because the hidden variables do not
interact and often gives a very good first guess.

In step 5 we find a solution y that maximises the par-
tial score sgi—1 (or approximately maximises it). For
this we can pick our optimisation method of choice. In
steps 9 and 10 we find the ground formulae which are
not maximally satisfied in the current solution y and
add them to the current partial grounding. We termi-
nate if no more new ground formulae are foundor a
maximum number of iterations is reached. This pro-
cess calculates one solution y in each iteration. The
final result is the solution y with highest score.

Algorithm 1 CPI (M7 GO, x)

1: i+ 0

2.y «—0

3: repeat

4: t—1+1

5: y « solve (Gi_l,x)

6: if s(y,x) > s(y’,x) then

7 y «y

8: end if

9:  for each (¢,w) € M do
10: G; — G;_l U Separate (¢, w,y, X)

11: end for ‘
12: until G% = ijjl or i > maxIterations
13: return y’

The following theorem shows that when CPI returns
the solution of iteration i the error is bound by the sum
of the error of the base solver on the partial problem
and the sum of absolute weights of newly found ground
formulae at this iteration. In particular, for an itera-
tion with no more newly found groundings the error is
only bound by (in fact it is equal to) the error of the
base solver on the partial problem, which is likely to
be much smaller and easier to solver than the original
one.

This also shows that if the base solver is exact (like
ILP) and no more groundings are found, CPI will be
exact. If we choose a solution for which new ground
formulae were found the error bound is incremented
by the sum of the absolute weights of these ground
clauses. Thus we still do well if the remaining clauses
have small weight.

Theorem. Let y be an optimal solution, y' the
solution returned by CPI taken from iteration i,
Ygi-1 an optimal solution for sgi-1 and b =

Z(¢'7w) Zcegé\géﬂ |w| then

§ (yv X) - S (yla X)
< Sgi-1 (yGiflaX) — Sgi-1 (y,7X) + b

Proof. Let Gi\ Gi~1 = (Ggs \ Gj‘;l)¢ be the newly



added groundings and G = (CW’ \ G;) ’ the remain-

ing groundings. We can split s(y,x) — s(y’,x) into
three parts, a score difference for the ground formu-
lac in G*~!, those in G*\ G*~! and G¢. We know
that y’ solves sgr optimally based on equation 3,
thus sg7 (7,%) — sg7 (¥',x) < 0. Furthermore, in the
worst case each term w - f¢ (y',x) in sgi/gi-1 (y/,%)
is by |w| smaller than each corresponding term
in sgigi-1 (¥,%), leading to sgigi-1 (¥,%) —
Sgi\Gi-1 (y/’x) < Z(qﬁ,w) Zcerﬁ\G;’l |’LU‘ O

Note that we do not make any claims about the run-
time of the algorithm. Even without a limit on the
number iterations it is guaranteed to converge in a
finite number of steps due to the fact that the solu-
tion space is finite and we will either try each solution
or return to a previous one. However, we cannot pro-
vide guarantees as to how many steps this will take.
Thus we allow the algorithm to terminate before con-
vergence is reached.

4.2 SEPARATION

An integral part of CPI is the separation step, in which
we need to find all groundings c of a formula ¢ and
weight w which are not maximally satisfied (according
to equation 3) for a given solution y’. It is this step
for which the Statistical Relational Learning paradigm
comes into play. In a (propositional) Markov Network
we do not have any higher order descriptions of its
features. Performing separation then means evaluating
all features of the network.

In Markov Logic, however, we can do better. There
are two cases to consider. If w > 0 we have to find
assignments ¢ with f¢ (y,x) = 0, that is, groundings
for which Fy x ¢[v/c] is false. Correspondingly, for
w < 0 we have to find ¢ for which Fy x ¢ [v/c] is true.

We cast this into a database query evaluation problem®
and store the atoms in y and x as rows in database
tables. Then we convert the formula ¢ (or —¢) to a
database query which is executed during CPI. Such
queries can often be processed very efficiently [Grohe
et al., 2001]. In our experiments the cost of query eval-
uation was marginal when compared to the cost of nu-
meric optimisation.

4.3 RELATED WORK

The idea of Cutting Planes have been used in at least
two ways. We can either use it to tackle ILP prob-
lems by solving their LP relaxation and, in case the
solution is fractional, generate additional constraints

S Alternatively we could frame this problem as an in-
stance of theorem proving, but all axioms are ground atoms
and we are looking for all groundings for which the formula
holds — Database technology is optimised for this setting.

the integer solution is known to fulfil. Or we use it
to solve problems with a large number of constraints,
such as ILP formulations of the Travelling Salesman
Problem [Dantzig et al., 1954], without having to in-
clude all of them.

Our work follows previous research in MAP infer-
ence [Riedel and Clarke, 2006, Anguelov et al., 2004,
Tromble and Eisner, 2006, Sontag and Jaakkola, 2007]
that uses Cutting Planes to avoid including all con-
straints in advance. However, in this work we frame,
implement and evaluate the approach more generally
as a meta algorithm for MAP inference in Markov
Logic Networks into which we can plug-in any ex-
isting propositional solver. This includes the intro-
duction of a separation routine that does not re-
quire additional implementation efforts when applied
to new tasks. Markov Logic Networks may also contain
nondeterministic constraints. In contrast to previous
work [Tromble and Eisner, 2006] our method handles
these without the need to branch-and-bound.

CPI is also similar in nature to LazySAT [Singla and
Domingos, 2006b], a memory-efficient implementation
of MWS: both methods avoid to instantiate the full
ground network. However, while CPI only instantiates
new parts of the ground network once the base solver
has optimised the current partial network, LazySAT
instantiates new parts of the network whenever they
may be needed during the inner loop of MWS. Note
that although CPI also reduces memory overhead, in
this work we focus on its speed and accuracy and thus
do not directly compare it to LazySAT, which inherits
the speed and accuracy of MWS.

5 EXPERIMENTS

We use two tasks to evaluate the utility of CPI as a
meta MAP inference method for Markov Logic. The
first is Semantic Role Labelling, the second Joint En-
tity Resolution. In both cases we want to investigate
how CPI affects the runtime and accuracy of two base
solvers: MWS and ILP. For all experiments we use our
own Markov Logic implementation running on a Pen-
tium 4 at 2.8Ghz with 4Gb RAM. All CPI systems use
local formulae with only one hidden atom to create the
initial grounding G°.

5.1 SEMANTIC ROLE LABELLING

Semantic Role Labelling refers to the task of identi-
fying and classifying the arguments and modifiers of
verbs in natural language text, as in

[vaccept]

[AOHG] [AM_MODWOuld] [A()Il’t]

[a1anything of value].

for the verb “accept”. Labels such as “A0” serve as
placeholders for actual roles of the given verb, such



as “acceptor” in the above case. The most effective
approach to Semantic Role Labelling to date is based
on the output of a constituent parser. Each constituent
is labelled with the type of argument or modifier it
represents with respect to the verb in question. We
model the task using a (typed) binary label predicate
defined over constituents and possible labels. Atoms of
this predicate are hidden at test time.

We set up a knowledge base of rules that describe lo-
cal features of constituents and global dependencies
between labels, resembling previous work in Semantic
Role Labelling [Punyakanok et al., 2005]. The rules we
use are slightly more general than our examples ¢ and
¢2 in section 2.

We learn the weights of this model using the CoNLL
2005 dataset [Carreras and Marquez, 2005] and the
Ounline Learner MIRA [Crammer and Singer, 2003].
For inference during training we use CPI with ILP.

For testing we use the first 100 verb frames from
the WSJ test set of the CoNLL 2005.7 In table 1
we show the following metrics: 1) the score delta to
the optimal solution with respect to the soft clauses,
ASsoft = 5G,op (¥,%X)—5a..;. (¥, %) where G, ¢ con-
tains all ground formulae for each non-deterministic
formula; 2) the number of violations of deterministic
formulae; 3) the runtime taken; 4) the number of calls
to the optimiser; 5) the F1 accuracy on the task. Note
that the total score delta As = s(y,x) — s(y’,x) is
always dominated by the hard constraints as they have
very large weights. Thus if system A produces one less
violation than system B its total score delta As will
be smaller.

We first note that using plain MWS with 100,000 flips
(M-100k) and no restarts® is less accurate in terms
of soft model score and F1 accuracy when compared
with CPI-MWS using the same number of flips (C-M-
100k). It is also significantly slower and produces some
hard constraint violations while CPI & MWS does not.
When using ILPwe achieve perfect model score since
ILP returns exact solutions. Using ILP with CPI (C-
ILP) is still exact; however, CPI speeds up the solver
by almost two orders of magnitude.®

We also ran CPI-ILP on the full test set to compare
our system with the state of the art, yielding 77.1 F1
measure. When compared to the entries in the CoNLL

"The reason for not using more instances were memory
problems we encountered when we were using MWS alone
and grounding the complete network. These problems will
likely disappear when using LazySAT instead of MWS.

8Note that we also experimented with using restarts;
however, differences to runs with equivalent total numbers
of flips and no restarts were only marginal.

9Note that the difference in runtime between MWS and
ILP should be taken with caution: for ILP we use a well-
established software library (Ip-solve), for MWS our own
implementation.

| [ Bssoge [ Viol [ #(5) [Tt [ F1_]

M-100k -0.098 | 0.05 | 70 1 0.61
C-M-10k -0.26 0.01 | 0.18 3.7 | 0.65
C-M-100k || -0.074 | O 1.2 3.5 | 0.69
1ILP 0 0 4.6 1 0.79
C-ILP 0 0 0.065 | 3.2 | 0.79

Table 1: Semantic Role Labelling results averaged over
the first 100 examples in WSJ test set; Asgof: is the
soft score delta wrt to the true MAP solution; Viol the
number of violations; It. the number of optimisation
calls; ¢ (s) the time spent in seconds; F1 is F1 accuracy.
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Figure 1: Runtime of CPI-ILP for Semantic Role La-
belling for different numbers of candidate constituents.

shared task that only use the output of one parser our
system would come out first [Carreras and Marquez,
2005].

We also wanted to investigate how CPI scales with
problem size. Figure 1 shows the runtime of CPI-ILP
against the number of candidate nodes. It seems that
for this dataset and problem, CPI scales almost lin-
early with problem size up until 50 candidates. After
50 candidates a linear trend can only be guessed due
to data sparseness. This linear dependency is inter-
esting because the actual number of ground formulae
rises quadratically (due to the no-overlap formula and
others).

5.2 JOINT ENTITY RESOLUTION

Entity resolution is a crucial problem in many busi-
ness, government and research projects. It can be de-
scribed as the task of finding database records that
refer to the same entity and is very similar to Coref-
erence Resolution in NLP. In our experiments records
are citations, and we search for citations describing
the same publication; however, we not only want to
find matching citations, we also want to jointly iden-
tify author or venue name strings referring to the same
author or venue, respectively.

We use a knowledge base with 46 formulae provided



| [ Assore | Viol [ (m) [Tt [ F1_]

M-100k -4578 704.5 | 2.67 | 1 0.30
C-M-1k -2446 796.1 | 0.55 | 30 | 0.69
C-M-10k || -2682 594.9 1 0.96 | 30 | 0.70
C-ILP 0 0 1.56 | 5.9 | 0.72

Table 2: Averaged results over 10 folds of the Cora
dataset;Asgop is the soft score delta wrt to the true
MAP solution; Viol the number of violations; It. the
number of optimisation calls; ¢(m) the time spent in
minutes; F1 is F'1 accuracy.

by Singla and Domingos [2005] with predicates such as
sameBib and sameAuthor that denote citation and au-
thor matches, respectively. The knowledge base states
regularities such as “if two authors names match the
corresponding citations match” or “if the tdf-if dis-
tance between the titles is between 0.7 and 0.8 the
titles match”. It also contains the transitivity rule

sameBib (v1,v2) A sameBib (va,v3)
= sameDBib (v1,v3)

This is a hard constraint and imposes a difficult prob-
lem for many generic inference methods [Poon and
Domingos, 2006].

In our first set of experiments we used a cleaned
version [Singla and Domingos, 2005] of the Cora
Database [Bilenko and Mooney, 2003], containing ap-
proximately 1200 citations of computer science ar-
ticles. In total these citations refer to about 120
unique publications. Following previous work [Singla
and Domingos, 2006b], we tested and trained us-
ing a 10-fold leave-one-out procedure and Pseudo-
Likelihood estimation while ensuring that folds do not
contain split citation clusters [Singla and Domingos,
2005]. Each fold contains roughly 120 records.

Table 2 shows our results for Entity Resolution. They
are consistent with those in table 1: again CPI renders
MWS faster and more accurate both in terms of vi-
olations, soft model score and F1 measure. However,
this time we cannot directly compare plain ILP with
CPI-ILP because the full ILP did not fit into memory.
In other words, here CPI makes an infeasible method
feasible. Note that in this case CPI-MWS did not con-
verge, thus we terminated the algorithm after a prede-
fined number of iterations (30).

Interestingly, the F1 accuracy of CPI with MWS is sig-
nificantly better than the F1 accuracy of MWS alone.
This can be explained if we consider that CPI-MWS
returns solutions with significantly higher soft model
score. This score reflects what the model learnt to be
a good matching, independent of the number of vio-
lations. CPI-MWS can achieve a higher soft score be-
cause it starts at a solution that maximises the lo-
cal score without considering any hard constraints.
MWS, on the other hand, starts at a random solution
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Figure 2: Runtime of CPI-ILP for different subsets of
Bibserv.org, averaged over 5 instances for each number
of citation pairs.

that may contain many (locally) unlikely matchings
and will spend most of its time making these unlikely
matchings consistent.

In our second set of experiments we wanted to again
evaluate the runtime behaviour of CPI when the prob-
lem size increases. For this purpose we used the Bib-
serv.org corpus and a model trained on the Cora
dataset. Bibserv.org consists of about 20,000 citations.
We used the same random subsets of size 50 to 500 in
steps of 50 as Singla and Domingos [2006b]. All fol-
lowing results are averaged over 5 datasets of the same
size.

Figure 2 shows the runtime of CPI-ILP with increas-
ing number of citation pairs — this corresponds to the
number of decisions to make. Again CPI-ILP seems to
scale linearly with the number of variables and thus
quadratically with the number of citations. Yet, the
number of features in the complete network scales at
least cubically with the number of citations due to the
transitivity clause.

6 CONCLUSION

In this paper we presented Cutting Plane Inference
(CPI), a novel method for finding MAP solutions in
Markov Logic that incrementally solves partial ver-
sions of the complete Ground Markov Network based
on a Cutting Plane approach. While Cutting Planes
have been used for specific MAP inference problems
before, this work shows how they can be generalised
and incorporated into a Statistical Relational Learn-
ing framework where they become automatically avail-
able for a wide range of tasks. Our method essentially
serves as a meta algorithm that alternates between de-
terministic first order query processing on one hand,
and numeric optimisation of partial problems on the
other.

We evaluated the proposed algorithm using two real-



world tasks for which we showed MWS to perform
poorly: Joint Entity Resolution and Semantic Role La-
belling. In both cases CPI makes an exact method
(ILP) more efficient while remaining exact, and an ap-
proximate method (MWS) both faster and more accu-
rate.

However, exact MAP inference in general Graphical
Models is PP-complete [Park, 2002]. Thus we obvi-
ously cannot expect Cutting Plane Inference to work
for arbitrary formulae, weights and problems — at least
not for ILP as base solver. Yet, we believe that both of
the above tasks are instances of a larger class of prob-
lems that are not so much characterised by their net-
work structure or strength of weights but by how well
local formulae and weights predict the global good-
ness of a structure. CPI extends the applicability of
SRL to this class and might therefore contribute to a
more widespread use of SRL.

It will be important to investigate how to charac-
terise the class of problems we can not solve with
CPI. For example, consider a conjunctive formula like
p(v1) A g (v2) with positive weight and sparsely pop-
ulated predicates p and ¢ in the current solution y.
Separation will find all pairs of v; and vs for which
the conjunction does not hold and here this set would
be almost exhaustive, resulting in a problem not much
smaller than the original one.
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