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Abstract

Model-based Bayesian reinforcement learning
has generated significant interest in the AI
community as it provides an elegant solu-
tion to the optimal exploration-exploitation
tradeoff in classical reinforcement learning.
Unfortunately, the applicability of this type
of approach has been limited to small do-
mains due to the high complexity of reason-
ing about the joint posterior over model pa-
rameters. In this paper, we consider the use
of factored representations combined with
online planning techniques, to improve scal-
ability of these methods. The main contri-
bution of this paper is a Bayesian framework
for learning the structure and parameters of
a dynamical system, while also simultane-
ously planning a (near-)optimal sequence of
actions.

1 Introduction

In the past decades, reinforcement learning (RL) has
emerged as a useful technique for learning how to op-
timally control systems with unknown dynamics (Sut-
ton & Barto, 1998). However classical RL has many
shortcomings. In particular, RL does not address the
problem of how to efficiently gather data to learn the
parameters of the system, as well as how to behave in
systems where the costs incurred during learning mat-
ter, i.e. the well known exploration-exploitation trade-
off problem. These shortcomings are mostly related to
the fact that classical RL does not consider the uncer-
tainty in the learned parameters for decision-making,
nor does it allow for flexibly including prior knowledge
about the system’s dynamics.

Model-based Bayesian RL methods have successfully
addressed these issues by maintaining a posterior dis-
tribution over unknown model parameters and acting

such as to maximize long-term expected rewards with
respect to this posterior (Dearden, Friedman, & An-
dre, 1999; Duff, 2002; Poupart, Vlassis, Hoey, & Re-
gan, 2006). Prior knowledge of the system can be de-
fined explicitly by specifying a prior distribution over
model parameters. This allows for a flexible way of
encoding uncertain knowledge into the learning algo-
rithm. Furthermore, if the resulting decision problem
is solved exactly, this provides an optimal exploration-
exploitation tradeoff, in that the agent will behave
such as to maximize long-term expected rewards with
respect to the prior.

However, due to the high complexity of model-based
Bayesian RL, most approaches have been limited to
very small domains (10-20 states). This is mainly due
to two reasons. First, when the number of states is
large, a large amount of data needs to be collected to
learn a good model, unless very few parameters are
unknown or some structural assumptions are made to
represent the dynamics with few parameters. Second,
most planning approaches in Bayesian RL become in-
tractable as the number of states increases, since plan-
ning is done over the full space of possible posteriors.

To address the first issue, we propose learning a fac-
tored representation of the dynamics via a Bayesian
approach. Factored representations can efficiently rep-
resent the dynamics of a system with fewer parame-
ters using a dynamic Bayesian network (DBN) that
exploits conditional independence relations existing
between state features (Boutilier, Dearden, & Gold-
szmidt, 2000; Guestrin, Koller, Parr, & Venkataraman,
2003). Bayesian RL techniques can be extended quite
easily to factored representations when the structure
of this DBN is known, however this is unreasonable in
many domains. Fortunately, the problem of simultane-
ously learning the structure and parameters of a Bayes
Net has received some attention (Heckerman, Geiger,
& Chickering, 1995; Friedman & Koller, 2003; Eaton
& Murphy, 2007), which we can leverage for our work.
However while these approaches provide an effective



way of learning the model, it is far from sufficient for
Bayesian RL, where the goal is to choose actions in
an optimal way, with respect to what we have learned
about the model.

To address the issue of action selection, we propose in-
corporating an online Monte Carlo approach to evalu-
ate sequences of actions with respect to the posterior
over structures and parameters. The focus on online
(rather than offline) planning means that we only need
to plan with respect to the current posterior (rather
than all possible posteriors), which offers substantial
computational savings.

The main contribution of this paper is a novel Bayesian
framework for optimizing the choice of actions in a
structured dynamical system, with unknown structure
and parameters. We present experimental results of
our approach in a variety of large network administra-
tion domains, showing good performance for problems
with thousands of states.

2 Background

A Markov Decision Process (MDP) is a general frame-
work for decision making in stochastic systems (Bell-
man, 1957). It is often used to represent reinforce-
ment learning problems (Sutton & Barto, 1998). We
consider an unknown system represented by an MDP
model in factored form (S, A, T, R) where:

• S : S1 × S2 × · · · × Sn, is the (discrete) set of
states of the system; S1, . . . , Sn correspond to the
domain of the n state variables (features).

• A, the (discrete) set of actions that can be per-
formed by the agent.

• T : S × A × S → [0, 1], the transition function,
where T (s, a, s′) = Pr(s′|s, a) represents the prob-
ability of moving to state s′ if the agent executes
action a in state s. This can be represented effi-
ciently by a DBN for each action, exploiting con-
ditional independence relations that exist between
state features (Boutilier et al., 2000). For sim-
plicity, we assume that these DBNs are bipartite
graphs, so dependencies only exist between state
variables at time t and state variables at time t+1.

• R : S × A → R, the reward function, defined for
every action of the agent in every state.

The DBN defining T for any action a ∈ A is repre-
sented by a graph Ga and set of parameters θGa

defin-
ing the conditional probability tables. For any state
variable s′i, we denote its set of parent variables in
this graph by Pari(Ga) and given the previous state s,
the values of these parents variables by ParVali(s, Ga).

For each possible value v ∈ Si of state variable s′i,
and each possible assignment to its parent values E ∈
SPari(Ga) =

∏

j∈Pari(Ga) Sj , θGa
contains a parameter

θ
i,v|E
Ga

that defines Pr(s′i = v|ParVali(s, Ga) = E, a).
Given such graph Ga and parameters θGa

, T (s, a, s′)
is computed efficiently as:

T (s, a, s′) =

n
∏

i=1

Pr(s′i|ParVali(s, Ga), a). (1)

The goal of the MDP agent is to find an action selec-
tion strategy, called a policy, that maximizes its long-
term expected rewards. The optimal action to take in
a state s is defined via the optimal value function V ∗

representing the return obtained by the optimal policy
starting in state s:

V ∗(s) = max
a∈A

[

R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ∗(s′)

]

.

(2)
The optimal action in s is obtained by taking the
arg max instead of the max in the last equation. In
general, a factored representation of the transition
does not induce a structured representation of the opti-
mal value function. However, approximate algorithms
exist to compute V ∗ more efficiently by exploiting the
factored representation (Guestrin et al., 2003).

2.1 Bayesian Reinforcement Learning

While the MDP framework allows one to compute the
optimal policy for any stochastic system, it requires
full knowledge of the transition dynamics. This is a
strong assumption in practice. Model-based Bayesian
RL weakens this assumption by instead maintaining
a probability distribution over the possible settings of
each unknown parameter (Dearden et al., 1999). It
assumes an initial prior distribution over these pa-
rameters, and uses Bayes’ rule to update the pos-
terior distribution whenever state-transitions are ob-
served in the course of interactions between the agent
and the environment. Given that transition parame-
ters are usually modeled using multinomial distribu-
tions, a natural choice to specify this posterior is the
Dirichlet distribution. The Dirichlet is specified by
“count” parameters, φ1, . . . , φm, specifying the likeli-
hood f(p|φ) that outcomes 1, . . . , m occur with proba-
bilities p1, . . . , pm given they were observed φ1, . . . , φm

times:

f(p|φ) =
1

B(φ)

m
∏

i=1

p
φi−1
i , (3)

where B(φ) is the multinomial beta function. This
choice of prior allows for a flexible way to input prior
knowledge in the system, as well as an easy way to
maintain the posterior. We refer to the set of counts φ



for all possible transitions (s, a, s′) as the information
state of the agent. The resulting decision problem is
the following: given the agent is in state s with in-
formation state φ, how should it behave such as to
maximize its future expected rewards? This new de-
cision problem can be modeled by an extended MDP
model, called Bayes-Adaptive MDP (BAMDP), where
the counts φ are included in the state space, and
the transition function models how these parameters
evolve given a particular state transition (Duff, 2002).
This extended MDP has infinitely many states but can
be solved exactly over a finite horizon for any partic-
ular current state and information state.

2.2 Learning Bayes Nets

Bayesian networks (BNs) have been used extensively
to build compact predictive models of multivariate
data. A BN models the joint distribution of multi-
variate data compactly by exploiting conditional inde-
pendence relations between variables. It is defined by
a set of variables X , a directed acyclic graph (DAG)
structure G over variables in X , and parameters θG,

where θ
i,v|E
G specifies the probability that Xi = v given

that its parents in G take value E.

Several approaches exist to learn BNs. Learning a
Bayes net can involve either only learning θG (if the
structure G is known), or simultaneously learning the
structure G and parameters θG. For our purposes,
we are mostly interested in Bayesian approaches that
learn both the structure and parameters (Heckerman
et al., 1995; Friedman & Koller, 2003; Eaton & Mur-
phy, 2007). These Bayesian approaches proceed by
first specifying a joint prior, P (G, θG), of the form:

P (G, θG) = P (G)P (θG|G), (4)

where P (G) is a prior over structures and P (θG|G)
is a conditional prior on the parameters θG given a
particular structure G. P (G) is often chosen to be
uniform, or proportional to β|E(G)| for some β ∈ (0, 1)
where |E(G)| is the number of edges in G, such as to
favor simpler structures.

It follows that if dataset D is observed, then the joint
posterior is defined as follows:

P (G, θG|D) = P (G|D)P (θG|G, D). (5)

To compute this posterior efficiently, several assump-
tions are usually made about the prior P (θG|G). First,
it should factorize into a product of independent
Dirichlet priors:

P (θG|G) =
∏n

i=1

∏

E∈SPari(G)
P (θ

i,∗|E
G |G),

P (θ
i,∗|E
G |G) ∼ Dirichlet(φ

i,∗|E
G ),

(6)

Under this independence assumption, the term
P (θG|G, D) is a product of Dirichlet distributions,
which can be updated easily by incrementing counts

φ
i,v|E
G for each Xi = v|ParVali(G) = E in D.

A second common assumption is that two equivalent
graph structures G and G′ should have equivalent pri-
ors over θG and θ′G (this is called the likelihood equiv-

alence assumption). This enforces a strong relation
between the priors P (θG|G) and P (θGc

|Gc) for the
complete graph Gc (where every variable depends on
all previous variables). Hence specifying φGc

totally
specifies the prior on θG for any other graph G.

For many problems, the posterior P (G|D) cannot
be maintained in closed form as it corresponds to

a discrete distribution over O(n!2(n

2)) possible graph
structures. Instead, MCMC algorithms can be
used to sample graph structures from this poste-
rior (Friedman & Koller, 2003). The well known
Metropolis-Hasting algorithm specifies that a move
from graph G to G′ should be accepted with proba-

bility min
{

1,
P (D|G′)P (G′)q(G|G′)
P (D|G)P (G)q(G′|G)

}

, where q(G′|G) is

the probability that a move from G to G′ is pro-
posed and P (D|G) =

∫

P (D|G, θG)P (θG|G)dθG. Such
random walk in the space of DAGs has the desired
stationary distribution P (G|D). Under previous as-
sumptions concerning the prior P (θG|G), P (D|G) can
be computed in closed form and corresponds to the
likelihood-equivalence Bayesian Dirichlet score metric
(BDe) (Heckerman et al., 1995). Typical moves con-
sidered include adding an edge, deleting an edge, or
reversing an edge in G.

3 Bayesian RL in Factored MDPs

We consider the problem of acting optimally in a sys-
tem represented as a factored MDP, in the case where
both the structure and parameters of the DBNs defin-
ing the transition function, T , are unknown. We as-
sume that the state features S1, . . . , Sn, the action set
A, and the reward function R, are known. Our work
extends trivially to the case where R is unknown, but
we leave this out for simplicity of presentation.

3.1 Factored Bayesian RL model

We consider the transition function T as a hidden vari-
able of the system, which is partially observed when-
ever state transitions occur in the system. In this view,
the decision problem can be cast as a Partially Observ-
able MDP (POMDP) (Kaelbling, Littman, & Cassan-
dra, 1998). The state of this POMDP captures both
the actual system state, and the DBNs defining T for
each action a ∈ A. Formally, this POMDP is defined



by the tuple (S′, A′, Z ′, T ′, O′, R′):

• S′ : S×G|A|, where S is the original state space of
the MDP, G is the set of DBNs (G, θG) (one per
action) and G is a bipartite graph from S1, . . . , Sn

to S1, . . . , Sn.

• A′ = A, the set of actions in the original MDP.

• Z ′ = S, the set of observations (i.e a transition to
a particular state of the MDP)

• T ′ : S′ × A′ × S′ → [0, 1], the transition function
in this POMDP, where:

T ′(s, G, θG, a, s′, G′, θ′G′) (7)

= Pr(s′, G′, θ′G′ |s, G, θG, a)

= Pr(s′|s, G, θG, a) Pr(G′, θ′G′ |G, θG, s, a, s′).

Since we assume that the transition function does
not change over time, then

Pr(G′, θ′G′ |G, θGs, a, s′) = I(G,θG)(G
′, θ′G′)

(the indicator function of (G, θG)), and

Pr(s′|s, G, θG, a) =

n
∏

i=1

θ
i,s′

i|ParVali(s,Ga)
Ga

.

• O′ : S′ × A′ × Z ′ → [0, 1], the observation func-
tion, where O(s′, G′, θ′G′ , a, z) is the probability of
observing z when moving to (s′, G′, θ′G′) by doing
action a. Here we simply observe the state of the
MDP, so O(s′, G′, θ′G′ , a, z) = Is′(z).

• R′ : S′ × A′ → R, the reward function, which
corresponds directly to the rewards obtained in
the MDP, i.e. R′(s, G, θG, a) = R(s, a).

Given that the state is not directly observable (i.e. we
do not know the correct structure and parameters), we
maintain a probability distribution over states, called
a belief. The initial belief state in this POMDP is
the initial state of the environment, along with priors
P (Ga, θGa

), ∀a ∈ A. At time t, the belief state cor-
responds to the current state of the MDP, st, along
with posteriors P (Ga, θGa

|ht), ∀a ∈ A, where ht is the
history of actions and observations up to time t.

To represent this belief compactly, we assume that the
joint priors P (Ga, θGa

) satisfy the assumptions stated
in section 2.2, namely they factorize into a product
P (Ga, θGa

) = P (Ga)P (θGa
|Ga) and the P (θGa

|Ga)
are defined by a product of independent Dirichlet dis-
tributions. For each graph Ga, starting from prior

counts φ
i,v|E
Ga

for all state variables i, values v ∈ Si,
and parent values E ∈ SPari(Ga), the posterior counts
are maintained by simply incrementing by 1 the counts

φ
i,s′

i|ParVali(s,Ga)
Ga

for all state variables i, each time a

transition (s, a, s′) occurs. As mentioned in section
2.2, the main difficulty is in maintaining the posterior
P (Ga|h), which is infeasible when the space of graphs
is large. We approximate this using a particle filter,
and for each particle (i.e. a sampled graph Ga), the
posterior P (θGa

|Ga) is maintained exactly with counts
φGa

. This particle filter is explained in more detail in
the next section.

Finding the optimal policy for this POMDP yields an
action selection strategy that optimally trades-off be-
tween exploration and exploitation such as to max-
imize long term expected return given the current
model posterior and state of the agent. Our Bayesian
RL approach therefore requires solving this POMDP.
While many algorithms exist to solve POMDPs, few
of them can handle high-dimensional infinite state
spaces, as is required here. Hence, we propose to use
online Monte Carlo methods to solve this challenging
optimization problem (McAllester & Singh, 1999).

3.2 Online Monte Carlo Planning Algorithm

To solve the planning problem outlined above, we need
efficient approximation methods, and in particular we
turn to online sampling techniques to overcome the
curse of dimensionality.

First, as mentioned above, we maintain the posterior
Pr(Ga|h) using a particle filter algorithm. This is done
by first sampling a set of K graphs from the prior
P (Ga) for each action a. We assign each graph a prob-
ability, pj

a = 1
K

, for j = 1 : K. For each sampled
graph, we also have a product of Dirichlet priors on
the parameters θGa

. Whenever a transition (s, a, s′)
occurs, the probability pj

a of graph Gj
a is updated:

p′j
a =

1

η
pj

a

∫

P (s′|s, a,Gj
a, θ

G
j
a
)P (θ

G
j
a
|Gj

a, h)dθ
G

j
a

(8)

=
1

η
pj

a

n
∏

i=1



φ
i,s′i|ParVali(s,Gj

a)

G
j
a

/
∑

v∈Si

φ
i,v|ParVali(s,Gj

a)

G
j
a





where the integral term is just the expected proba-
bility of P (s′|s, a) under the current posterior for θ

G
j
a
,

and η is a normalization constant such that
∑K

j=1 p′ja =

1. For the Dirichlet posterior P (θ
G

j
a
|Gj

a, h) associated

with Gj
a, the appropriate counts are updated each time

a corresponding state transition occurs.

Turning our attention to the planning problem, we now
search for the best action to execute, given the current
state, the current distribution on graphs (defined by
pj

a), and the current posterior over parameters for each
graph. Define Q∗(s, b, a) to be the maximum expected
sum of rewards (i.e. the value) of applying action a

when the agent is in MDP state s and has posterior
b over DBNs. Then the optimal value is defined by



V ∗(s, b) = maxa∈A Q∗(s, b, a) and the best action to
apply is simply arg maxa∈A Q∗(s, b, a).

Algorithm 1 V(s, b, d, N)

1: if d = 0 then

2: return V̂ (s, b)
3: end if

4: maxQ← −∞
5: for a ∈ A do

6: q ← R(s, a)
7: for j = 1 to N do

8: Sample s′ from P (s′|s, b, a)
9: b′ ← UpdateGraphPosterior(b, s, a, s′)

10: q ← q + γ

N
V(s′, b′, d− 1, N)

11: end for

12: if q > maxQ then

13: maxQ← q
14: maxA← a
15: end if

16: end for

17: if d = D then

18: bestA← maxA
19: end if

20: return maxQ

A recursive approach for tractably estimating V ∗(s, b)
using a depth-limited online Monte Carlo search is pro-
vided in Algorithm 1. Every time the agent needs to
execute an action, the function V(s, b, D, N) is called
for the current state s and posterior b. D corresponds
to the depth of the search tree (i.e. planning horizon)
and N to the branching factor (i.e. number of suc-
cessor states to sample at each level, for each action).
To sample a successor state s′ from P (s′|s, b, a), we
can simply sample a graph Ga for action a according
to the probabilities pj

a and then sample s′ from this
DBN, given that the parents take values s. At the
fringe, an estimate V̂ (s, b) of the return obtained from
this posterior is used. Several techniques can be used
to estimate V̂ (s, b). For instance one could maintain
an approximate value function V̂j(s) for each sampled
factored MDP defined by the DBNs {(Gj

a, φ
G

j
a
)|a ∈ A}

and then compute V̂ (s, b) =
∑K

j=1 V̂j(s)
∏

a∈A pj
a. The

approximate value functions V̂j(s) can be updated ef-
ficiently via prioritized sweeping every time the counts
φ are updated. For the experiments presented be-
low, we simply use V̂ (s, b) = maxa∈A R(s, a). The
UpdateGraphPosterior updates the Dirichlet pos-
teriors and probabilities pj

a presuming a transition
(s, a, s′) was observed. The best action to execute
for the current time-step can be retrieved through the
bestA variable for the top node of the tree. The com-
putation time allowed to estimate V ∗(s, b) can be lim-
ited by controlling the branching factor (N) and search
depth (D), albeit at the expense of lesser accuracy.

3.3 Resampling DBNs

The current approach is not particularly effective when
the initial set of sampled DBN structures is poor,
since we are simply updating weights and therefore
not changing the structure. This can be addressed
by resampling new DBNs from the current posterior
P (G|h) to obtain more likely structures after obser-
vation of the history h. We implement this using an
MCMC algorithm, as described in section 2.2. In gen-
eral, it may not be appropriate to re-sample graphs
too frequently. One useful criteria to decide when to
resample new graphs is to look at the overall likelihood
La of our current set of DBNs for a particular action
a. This can be computed directly from the normal-
ization constant η (Equation 8). Presuming that at
time t = 0, La = 1, we can simply update L′

a = ηLa

at every step. Then whenever La falls below some
threshold, we resample a new set of K graph structures
G′j

a from posterior P (Ga|h) and update the Dirich-
let posterior P (θ

G
j
a
|Gj

a, h) for each graph according to
the whole history h (starting from the Dirichlet prior
P (θGa

|Ga)). The probabilities pj
a for these new graphs

are then reinitialized to 1
K

and the likelihood La to 1.

4 Experiments

To validate our approach, we experiment with
instances of the network administration domain
(Guestrin et al., 2003). A network is composed of n

computers linked together by some topology. Each
computer is either in running or failure mode. A run-
ning computer has some probability of transitioning
to failure, independent of its neighbors in the network;
that probability is increased for every neighbor in fail-
ure mode. A computer in failure mode remains so until
rebooted by the operator. A reward of +1 is obtained
for every running computer in the network at every
step, no reward is given for failed computers, and a
-1 reward is received for each rebooting action. The
goal of the operator is to maximize the number of run-
ning computers while minimizing reboots actions. The
starting state assumes all computers are running.

In our experiments, we assume a probability 1
30 that

a running computer goes into failed mode and a prob-
ability 1

10 that a failed computer induces failure in
any of its neighbors. So at any step, the probability
that a running computer remains in a running state
is 29

30 (0.9)
NF where NF is the number of neighbors in

failure state. We assume a discount factor γ = 0.95.

This problem can be modeled by a factored MDP with
n binary state variables, each representing the run-
ning state of a computer in the network. There are
n + 1 actions: a reboot action for each computer and



a DoNothing action. The DBN structure represent-
ing the dynamics when no reboot is performed is a
bipartite graph where the state variable S′

i (the next
state of computer i) depend on Si (the previous state
of computer i) and Sj for all computers j connected
to i in the network. Note that if S′

i depends on Sj ,
then this implies j is connected to i and thus S′

j de-
pends on Si. Hence the adjacency matrix A encoding
the dependence relations in this bipartite graph, where
entry Aij = 1 if S′

j depend on Si, 0 otherwise, is always
symmetric and has a main diagonal full of ones.

In terms of prior knowledge, we assume the agent
knows that rebooting a computer always puts it back
into running mode and doesn’t affect any other com-
puter. The goal of the agent is to learn the behavior of
each computer in the network when no reboot is per-
formed on them. Therefore, a single DBN is learned
for the behavior of the system when no reboot is per-
formed. We also assume the agent knows that the
adjacency matrix is symmetric and has a main diago-
nal of ones. However we do not assume that the agent
knows the topology of the network. We choose a prior
over structures that is a uniform distribution over bi-
partite graphs with symmetric adjacency matrix (and
main diagonal equal to 1). Given a prior of this form,
the set of moves we consider to sample graphs in the
Metropolis-Hasting algorithm consist of inverting any
of the binary variables in the upper-right half of the
adjacency matrix A (excluding the main diagonal) as
well as the corresponding entry in the bottom-left half.
Moves of this type preserve the symmetry in the ad-
jacency matrix, and correspond to adding or remov-
ing a connection between any pair of computers in
the network. We assume no prior knowledge regard-
ing the probabilities of failure, so a uniform Dirichlet
prior was used. Under the likelihood equivalence as-
sumption, the prior counts φG are defined such that

φ
i,v|E
G = 1

|SPari(G)||Si|
= 2−|Pari(G)|−1.

We consider three different network architectures: a
simple linear network of 10 computers (1024 states),
a ternary tree network composed of 13 computers
(8192 states) and a dense network of 12 comput-
ers (4096 states) composed of 2 fully connected
components of 6 computers, linked to each other.
These networks are shown in Figure 1. To assess
the performance of our structured Bayesian RL
approach, we compare it to a similar model-based
Bayesian RL that learns the full joint distribution
table, i.e. the DBN where each next state variable
S′

i depends on all previous state variables Sj . We
also consider the case where the DBN structure is
fully known in advance and only the probability
parameters are learned. These three approaches
are compared in terms of three different metrics:

1 2 3 4 5 6 7 8 9 10
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Figure 1: Linear network (top), ternary tree network
(left) dense network (right).

empirical return, distribution error and structure
error, as a function of the number of learning steps.
The distribution error corresponds to a weighted
sum of L1-distance between the distributions of the
next state variables as defined by the Dirichlet pos-
terior counts and the exact distributions in the system:

∑K

j=1 pj
a

∑

s∈S

∑n

i=1

∣
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ
i,∗|ParVali(s,G

j
a)

G
j
a

||φ
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j
a)

G
j
a

||1

− P (S′
i|s, a)

∣
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∣
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∣

∣
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∣
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The structure error is computed as a weighted sum
of the errors in the adjacency matrix of the sampled
graphs compared to the correct adjacency matrix:
∑K

j=1 pj
a

∑n

i=1

∑n

k=1 |A
Gj

a

ik − AG∗

ik |, where AGj
a is the

adjacency matrix for sampled graph Gj
a and AG∗

the exact adjacency matrix. All reported results are
averaged over 50 simulations of 1500 steps each. Error
bars were small, so were removed for clarity.

4.1 Linear Network

In the linear network experiment, we sample K = 10
graphs, and resampling is performed whenever lnLa <

−100. Online planning is done with depth D = 2 and
branching factor N = 5 for each action. Since we
use the immediate reward at the fringe of the search
tree, this corresponds to approximate planning over a
3-step horizon. These same parameters are also used
for planning with the known structure, and over the
full joint probability table. Results are presented in
Figures 3-5.

These figures show that our approach (denoted Struc-

ture Learning) obtains similar returns as when the
structure is known in advance (denoted Known Struc-

ture). Both of these cases reach optimal return (de-
noted Known MDP1) very quickly, within 200 steps.
Our approach is also able to learn the transition dy-
namics as fast as when the structure is known a pri-
ori. On the other hand, the unstructured approach
(denoted Full Joint) takes much more time to achieve
a good return and learn the dynamics of the system.
This confirms that assuming a structured representa-
tion of the system can significantly speed up learning.
Finally, we also observe that the structure learning al-

1This is the value iteration solution, assuming the struc-
ture and parameters are fully known in advance.
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Figure 2: Most likely networks among samples after
1500 steps: Linear network (top), ternary tree network
(left) dense network (right).

gorithm is able to learn a good structure of the domain
over time (see Figure 4.1). Even though the sampled
structures are not perfect, our approach is still able to
predict future states of the system with similar accu-
racy as when the structure is known in advance. The
average planning times per action are 100ms for struc-
ture learning, and 19ms for the other two approaches
with fixed structure.

4.2 Ternary Tree Network

In the ternary tree network experiment, we sample
K = 8 graphs, and resample them whenever lnLa <

−150. For the planning, we use a depth D = 2 and
sample N = 4 next states for each action. Results are
presented in Figures 6-8. The results are similar to the
Linear Network experiment. The main point to note
is that this is a significantly harder problem for the
unstructured approach, which even after 1500 steps
of learning has not yet improved. This is in contrast
to our approach which obtains similar performance as
when the structure is known a priori, and reaches op-
timal performance after just a few hundred steps of
learning. These results are obtained even though the
priors we provide are very weak. The average planning
times per action are 153ms for structure learning, and
29ms for the two approaches with fixed structure.

4.3 Dense Network

In the dense network experiment, we sample K = 8
graphs, and resample them whenever lnLa < −120.
For the planning, we assume D = 2 and N = 4. Re-
sults are presented in Figures 9-11. In this domain, we
observe a surprising result: our approach using struc-
ture learning is able to learn the dynamics of the sys-
tem much faster than when the structure is known
in advance (see Figure 10), even though the learned
structures are still far from correct (see Figures 11 and
4.1). This is a domain where there are many dependen-
cies between state variables, so there are many param-
eters to learn (whether or not the structure is known).
In such a case, our structure learning approach is at an
advantage, because early on in the learning, it can fa-
vor simpler structures which approximate the dynam-

ics reasonably well from very few learning samples (e.g.
< 250). As further data is acquired, more complex
structures can be inferred (and more parameters es-
timated), in which case our approach achieves similar
return as when the structure is known, while it contin-
ues to estimate the true parameters more accurately.

This result has important implications for RL in large
domains. Namely, it suggests that even in domains
where significant dependencies exist between state
variables, or where there is no apparent structure, a
structure learning approach can be better than assum-
ing a known (correct) structure, as it will find simple
models that allow powerful generalization across simi-
lar parameters, thus allowing for better planning with
only a small amount of data.

The average planning times per action are 120ms for
structure learning, and 22ms for the other two ap-
proaches with fixed structure.

5 Conclusion

This paper presents a novel Bayesian framework for
learning both the structure and parameters of a fac-
tored MDP, while also simultaneously optimizing the
choice of actions to trade-off between model explo-
ration and exploitation. It is important to note that
both the use of a factored representation, and the use
of online planning, are key to allowing our approach
to scale to large domains. By learning a factored rep-
resentation, we allow powerful generalization between
states sharing similar features, hence learning of the
model makes more efficient use of data. It is espe-
cially interesting to notice that our structure learning
approach is a useful way to accelerate RL even in do-
mains with very weak structure.
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