Tightening LP Relaxations for MAP using Message Passing

David Sontag
CSAIL, MIT
Cambridge, MA

Talya Meltzer
Hebrew University
Jerusalem, Israel

Abstract

Linear Programming (LP) relaxations have
become powerful tools for finding the most
probable (MAP) configuration in graphical
models. These relaxations can be solved
efficiently using message-passing algorithms
such as belief propagation and, when the re-
laxation is tight, provably find the MAP con-
figuration. The standard LP relaxation is
not tight enough in many real-world prob-
lems, however, and this has lead to the use
of higher order cluster-based LP relaxations.
The computational cost increases exponen-
tially with the size of the clusters and lim-
its the number and type of clusters we can
use. We propose to solve the cluster selec-
tion problem monotonically in the dual LP,
iteratively selecting clusters with guaranteed
improvement, and quickly re-solving with the
added clusters by reusing the existing solu-
tion. Our dual message-passing algorithm
finds the MAP configuration in protein side-
chain placement, protein design, and stereo
problems, in cases where the standard LP re-
laxation fails.

1 Introduction

The task of finding the maximum aposteriori assign-
ment (or MAP) in a graphical model comes up in a
wide range of applications. For an arbitrary graph,
this problem is known to be NP hard [11] and various
approximation algorithms have been proposed.

Linear Programming (LP) relaxations are commonly
used to solve combinatorial optimization problems in
computer science, and have a long history of being
used to approximate the MAP problem in general
graphical models (e.g., see [9]). LP relaxations have an
advantage over other approximate inference schemes in

Amir Globerson
CSAIL, MIT
Cambridge, MA

Yair Weiss
Hebrew University
Jerusalem, Israel

Tommi Jaakkola
CSAIL, MIT
Cambridge, MA

that they come with an optimality guarantee — if the
solution to the linear program is integral, then it is
guaranteed to give the global optimum of the MAP
problem.

An additional attractive quality of LP relaxations is
that they can be solved efficiently using message-
passing algorithms such as belief propagation and its
generalizations [3, 13, 15]. In particular, by using
message-passing algorithms, we can now use LP re-
laxations for large-scale problems where standard, off-
the-shelf LP solvers could not be used [18].

Despite the success of LP relaxations, there are many
real-world problems for which the basic LP relaxation
is of limited utility in solving the MAP problem. For
example, in a database of 97 protein design problems
studied in [18], the standard LP relaxation allowed
finding the MAP in only 2 cases.

One way to obtain tighter relaxations is to use cluster-
based LP relaxations, where local consistency is en-
forced between cluster marginals. As the size of the
clusters grow, this leads to tighter and tighter relax-
ations. Furthermore, message-passing algorithms can
still be used to solve these cluster-based relaxations,
with messages now being sent between clusters and not
individual nodes. Unfortunately, the computational
cost increases exponentially with the size of the clus-
ters, and for many real-world problems this severely
limits the number of large clusters that can be feasibly
incorporated into the approximation. For example, in
the protein design database studied in [18], each node
has around 100 states, so even a cluster of only 3 vari-
ables would have 106 states. Clearly we cannot use too
many such clusters in our approximation.

In this paper we propose a cluster-pursuit method
where clusters are incrementally added to the relax-
ation, and where we only add clusters that are guar-
anteed to improve the approximation. Similar to the
work of [16] who worked on region-pursuit for sum-
product generalized belief propagation [19], we show

how to use the messages from a given cluster-based
approximation to decide which cluster to add next. In
addition, by working with a message-passing algorithm
based on dual coordinate descent, we monotonically
decrease an upper bound on the MAP value.

2 MAP and its LP Relaxation

We consider functions over n discrete variables © =
{z1,...,x,} defined as follows. Given a graph G =
(V, E) with n vertices, and potentials ;;(z;, z;) for all
edges ij € E, define the function

f(:):,0) = Z Hij(a?i,xj) + 291(.’170 . (1)

ijEE eV

Our goal is to find the MAP assignment, x,;, that
maximizes the function f(x;8).

The MAP problem can be formulated as a linear pro-
gram as follows. Let p be a vector of marginal proba-
bilities that includes {u;;(zi,z;)}ijer over variables
corresponding to edges and {u;(x;)}icv associated
with the nodes. The set of p that arise from some joint
distribution is known as the marginal polytope [14],

M@ = {i| Zpte) se. 1o5) = gl |,

The MAP problem can then be shown to be equivalent
to the following LP,

) = -0 2
max f(x, 0) nax w0, (2)

where pu - 0 = ZijeE Zx% O35 (i, xj) i (i, 25) +
> i 2w, 1i(xi)0i(z:). There always exists a maximiz-
ing p that is integral — a vertex of the marginal poly-
tope — and which corresponds to x,;. Although the
number of variables in this LP is only O(|E|+|V]), the
difficulty comes from an exponential number of linear
inequalities typically required to describe the marginal
polytope M(G).

The idea in LP relaxations is to relax the difficult
global constraint that the marginals in g arise from
some common joint distribution. Instead, we enforce
this only over some subsets of variables that we refer
to as clusters. More precisely, we introduce auxiliary
distributions over clusters of variables and constrain
the edge distributions p;;(z;, z;) associated with each
cluster to arise as marginals from the cluster distribu-
tion.! Let C be a set of clusters such that each ¢ € C is
a subset of {1,...,n}, and let 7.(z.) be any distribu-
tion over the variables in ¢. We also use 7.(z;,z;) to

'Each edge may participate in multiple clusters.

refer to the marginal of 7.(z.) for the edge (i,7), i.e.
Te(zs, 25) = ch\” Te(z.). Define Mc(G) as

2, ig (i) = (i)
Tc(iﬂi,xj) = Mij(fchxj)

Zrc Tc(xc) =1

It is easy to see that M¢(G) is an outer bound on
M(G), namely Mc(G) O M(G). As we add more
clusters to C the relaxation of the marginal polytope
becomes tighter. Note that similar constraints should
be imposed on the cluster marginals, i.e., they them-
selves should arise as marginals from some joint distri-
bution. To exactly represent the marginal polytope,
such a hierarchy of auxiliary clusters would require
clusters of size equal to the treewidth of the graph.
For the purposes of this paper, we will not generate
such a hierarchy but instead use the clusters to con-
strain only the associated edge marginals.

dr>0

2.1 Choosing Clusters in the LP Relaxation

Adding a cluster to the relaxation Mc(G) requires
computations that scale with the number of possible
cluster states. The choice of clusters should therefore
be guided by both how much we are able to constrain
the marginal polytope, as well as the computational
cost of handling larger clusters. We will consider a
specific scenario where the clusters are selected from
a pre-defined set of possible clusters Cy such as triplet
clusters. However, we will ideally not want to use all
of the clusters in Cy, but instead add them gradually
based on some ranking criterion.

The best ranking of clusters is problem dependent. In
other words, we would like to choose the subset of clus-
ters which will give us the best possible approximation
to a particular MAP problem. We seek to iteratively
improve the approximation, using our current beliefs
to guide which clusters to add. The advantage of iter-
atively selecting the clusters is that we add them only
up to the point that the relaxed LP has an integral
solution.

Recently, Sontag and Jaakkola [12] suggested an ap-
proach for incrementally adding constraints to the
marginal polytope using a cutting-plane algorithm. A
similar approach may in principle be applied to adding
clusters to the primal problem. One shortcoming of
this approach is that it requires solving the primal LP
after every cluster added, and even solving the pri-
mal LP once is infeasible for large problems involving
hundreds of variables and large state spaces.

In the next section we present a method that incre-
mentally adds clusters, but which works exclusively
within the dual LP. The key idea is that the dual LP

provides an upper bound on the MAP value, and we
seek to choose clusters to most effectively minimize
this bound. Note that an analogous bound minimiza-
tion strategy is problematic in the primal where we
would have to assess how much less the maximum
is due to including additional constraints. In other
words, obtaining a certificate for improvement is dif-
ficult in the primal. Moreover, unlike the dual, the
primal algorithm might not give an upper bound on
the MAP prior to convergence.

Finally, we can “warm start” our optimization scheme
after each cluster addition in order to avoid re-solving
the dual LP. We do this by reusing the dual vari-
ables calculated in the previous iterations which did
not have the new clusters.

3 Dual LP Relaxation

The obstacles to working in the primal LP lead us
to consider the dual of the LP relaxation. Different
formulations of the primal LP have lead to different
dual LPs, each with efficient message-passing algo-
rithms for solving them [3, 6, 13, 15]. In this paper
we focus on a particular dual formulation by Glober-
son and Jaakkola [3] which has the advantage that the
message-passing algorithm corresponds to performing
coordinate-descent in the dual LP. Our dual algorithm
will address many of the problems that were inherent
in the primal approaches, giving us:

1. Monotonically decreasing upper bound on MAP.

2. Choosing clusters which give a guaranteed bound
improvement.

3. Simple “warm start” of tighter relaxation.

4. An efficient algorithm that scales to very large
problems.

3.1 The Generalized MPLP Algorithm

The generalized Max-Product LP (MPLP) message-
passing algorithm, introduced in [3], decreases the dual
objective of the cluster-based LP relaxation at every
iteration. This monotone property makes it ideal for
adding clusters since we can initialize the new mes-
sages such that the dual value is monotonically de-
creased.

Another key advantage of working in the dual is that
the dual objective gives us a certificate of optimality.
Namely, if we find an assignment « such that f(x;0) is
equal to the dual objective, we are guaranteed that x
is the MAP assignment (since the dual objective upper
bounds the MAP value). Indeed, using this property

we show in our experiments that MAP assignments
can be found for nearly all of the problems we consider.

We next describe the generalized MPLP algorithm for
the special case of clusters comprised of three nodes.
Although the algorithm applies to general clusters, we
focus on triplets for simplicity, and because these are
the clusters used in the current paper.

MPLP passes the following types of messages:

e Edge to Node: For every edge e € E (e denotes
two indices in V') and every node i € e, we have a
message Ao (2;).

e Edge to Edge: For every edge e € E, we have
a message Ae—e(re) (where x. is shorthand for
x;,x;, and ¢ and j are the nodes in the edge).

e Triplet to Edge: For every triplet cluster ¢ € C,
and every edge e € ¢, we have a message A\.—¢(Z¢).

The updates for these messages are given in Figure
1. To guarantee that the dual objective decreases, all
messages from a given edge must be sent simultane-
ously, as well as all messages from a triplet to its three
edges.

The dual objective that is decreased in every iteration
is given by

gA) = ZH}CELX Oi(:) + > Apicsil@i)

i€V kEN(i)

+ ZH}EEIX >\e—>e(1'e) + Z /\c—>e(ze)

eckE cie€c
It should be noted, however, that not all A are dual
feasible. Rather, A needs to result from a reparameter-
ization of the underlying potentials (see [3]). However,
it turns out that after updating all the MPLP messages
once, all subsequent A will be dual feasible, regardless
of how A is initialized.?

By LP duality, there exists a value of A such that g(\)
is equal to the optimum of the corresponding primal
LP. Although the MPLP updates decrease the objec-
tive at every iteration, they may converge to a A that
is not dual optimal, as discussed in [3]. However, as
we will show in the experiments, our procedure of-
ten finds the exact MAP solution, and therefore also
achieves the primal optimum in these cases.

3.2 Choosing Clusters in the Dual LP
Relaxation

In this section we provide a very simple procedure that
allows adding clusters to MPLP, while satisfying the

2In our experiments, we initialize all messages to zero.

e Edge to Node: For every edge ij € E and node i (or j) in the edge:

2/ _ 1 L
Mjmi(wi)m = 2 (N7 (@) - 03(a)) + g mae| D5 Aemiy (i) + 47 (25) + (i) + 05 ay)|

ciijEc

where A, I(x;) is the sum of edge-to-node messages into i that are not from edge ij, namely: /\i_j (z;) =

ZkeN(i)\j Aik—»i(zi)-
e Edge to Edge: For every edge ij € E:

ciij€Ec

eec

2 1
Nij—ij(Tiy Tj) = — 3 Z Ae—ij(Tiy x5) + 3

>\c—>e(xe) — *g()\e—w(xe)Jr g)‘c/—m(ze)>

[)\;i(xj) +)\Z_J(ﬂcz) + 055 (2i,25) + i () + 0, (mJ)}

e Triplet to Edge: For every triplet ¢ € C and every edge e € ¢:

+ %max{ Z ()\e’ﬁe/(xe» + Z

T
o\e e’ec\e

Aoer ())|

Figure 1: The generalized MPLP updates for an LP relaxation with three node clusters.

algorithmic properties in the beginning of Section 3.

Assume we have a set of triplet clusters C and now
wish to add a new triplet. Denote the messages before
adding the new triplet by A;. Two questions naturally
arise. The first is: assuming we decide to add a given
triplet, how do we set Ay41 such that the dual objective
retains its previous value g(A;). The second question
is how to choose the new triplet to add.

The initialization problem is straightforward. Simply
set A¢11 to equal Ag for all messages from triplets and
edges in the previous run, and set Apy; for the mes-
sages from the new triplet to its edges to zero.? This
clearly results in g(A¢11) = g(Ap).

In order to choose a good triplet, one strategy would be
to add different triplets and run MPLP until conver-
gence to find the one that decreases the objective the
most. However, this may be computationally costly
and, as we show in the experiments, is not necessary.
Instead, the criterion we use is to consider the decrease
in value that results from just sending messages from
the triplet ¢ to its edges (while keeping all other mes-
sages fixed).

The decrease in g(A) resulting from such an update
has a simple form, as we show next. Assume we are
considering adding a triplet c¢. For every edge e € c,
define b.(z.) to be

be(ze) = Aemel(ze) + Z Ao —ele) (3)

c:ecc!

3Tt is straightforward to show that Ay is dual feasible.

where the summation over clusters ¢’ does not include
¢ (those messages are initially zero). The decrease in
g(X) corresponding to updating only messages from c
to the edges e € ¢ can be shown to be

d(c) = erﬁx be(xe) — max lz be(me)] @

ecc ecc

The above corresponds to the difference between inde-
pendently maximizing each edge and jointly maximiz-
ing over the three edges. Thus d(c) is a lower bound
on the improvement in the dual objective if we were
to add triplet c. Our algorithm will therefore add the
triplet ¢ that maximizes d(c).

3.3 The Dual Algorithm

We now present the complete algorithm for adding
clusters and optimizing over them. Let Cy be the
predefined set of triplet clusters that we will consider
adding to our relaxation, and let Cy, be the initial re-
laxation consisting of only edge clusters (pairwise local
consistency).

1. Run MPLP until convergence using the Cy, clusters.

2. Find an integral solution & by locally maximizing
the single node beliefs b;(z;), where b;(z;) = 0;(z;) +
ZkeN(i) Aki—i(x;). Ties are broken arbitrarily.

3. If the dual objective g(A;) is sufficiently close to
the primal objective f(x;8), terminate (since x is ap-
proximately the MAP).

4. Add the cluster ¢ € Cy with the largest guaranteed
bound improvement, d(c), to the relaxation.

5. Construct “warm start” messages A;y1 from A;.
6. Run MPLP for N iterations, and return to 2.

Note that we obtain (at least) the promised bound im-
provement d(c) within the first iteration of step 6. By
allowing MPLP to run for N iterations, the effect of
adding the cluster will be propagated throughout the
model, obtaining an additional decrease in the bound.
Since the MPLP updates correspond to coordinate-
descent in the dual LP, every step of the algorithm
decreases the upper bound on the MAP. The mono-
tonicity property holds even if MPLP does not con-
verge in step 6, giving us the flexibility to choose the
number of iterations N. In Section 5 we show results
corresponding to two different choices of N.

In the case where we run MPLP to convergence before
choosing the next cluster, we can show that the greedy
bound minimization corresponds to a cutting-plane al-
gorithm, as stated below.

Theorem 1. Given a dual optimal solution, if we find
a cluster for which we can guarantee a bound decrease,
all primal optimal solutions were inconsistent with re-
spect to this cluster.

Proof. By duality both the dual optimum and the pri-
mal optimum will decrease. Suppose for contradiction
that in the previous iteration there was a primal feasi-
ble point that was cluster consistent and achieved the
LP optimum. Since we are maximizing the LP, after
adding the cluster consistency constraint, this point is
still feasible and the optimal value of the primal LP
will not change, giving our contradiction. O

This theorem does not tell us how much the given
cluster consistency constraint was violated, and the
distinction remains that a typical cutting-plane algo-
rithm would attempt to find the constraint which is
most violated.

4 Related Work

Since MPLP is closely related to the max-product gen-
eralized belief propagation (GBP) algorithm, our work
can be thought of as a region-pursuit method for GBP.
This is closely related to the work of Welling [16] who
suggested a region-pursuit method for sum-product
GBP. Similar to our work, he suggested greedily
adding from a candidate set of possible clusters. At
each iteration, the cluster that results in the largest
change in the GBP free energy is added. He showed
excellent results for 2D grids, but on fully connected
graphs the performance actually started deteriorating

with additional clusters. In [17], a heuristic related to
maxent normality [19] was used as a stopping crite-
rion for region-pursuit to avoid this behavior. In our
work, in contrast, since we are working with the dual
function of the LP, we can guarantee monotonic im-
provement throughout the running of the algorithm.

Our work is also similar to Welling’s in that we focus
on criteria for determining the utility of adding a clus-
ter, not on finding these clusters efficiently. We found
in our experiments that a simple enumeration over
small clusters proved extremely effective. For prob-
lems where triplet clusters alone would not suffice to
find the MAP, we could triangulate the graph and con-
sider larger clusters. This approach is reminiscent of
the bounded join-graphs described in [1].

There is a large body of recent work describing the
relationship between message-passing algorithms such
as belief propagation, and LP relaxations [7, 15, 18].
Although we have focused here on using one particu-
lar message-passing algorithm, MPLP, we emphasize
that similar region-pursuit algorithms can be derived
for other message-passing algorithms as well. In par-
ticular, for all the convex max-product BP algorithms
described in [15], it is easy to design region-pursuit
methods. The main advantage of using MPLP is its
guaranteed decrease of the dual value at each iteration,
a guarantee that does not exist for general convex BP
algorithms.

Region-pursuit algorithms are also conceptually re-
lated to the question of message scheduling in BP, as
in the work of Elidan et al. [2]. One way to think
of region-pursuit is to consider a graph where all the
clusters are present all the time, but send and receive
non-informative messages. The question of which clus-
ter to add to an approximation, is thus analogous to
the question of which message to update next.

5 Experiments

Due to the scalable nature of our message-passing al-
gorithm, we can apply it to cases where standard LP
solvers cannot be applied to the primal LP (see also
[18]). Here we report applications to problems in com-
putational biology and machine vision.*

We use the algorithm from Section 3.3 for all of our ex-
periments. We first run MPLP with edge clusters until
convergence or for at most 1000 iterations, whichever
comes first. All of our experiments, except those in-
tended to show the difference between schedules, use
N = 20 for the number of MPLP iterations run after
adding a cluster. While running MPLP we use the
messages to decode an integral solution, and compare

“Graphical models for these are given in [18].

-1063.57

-1064}

T

-1064.51

-
-

-

Dt JONN

-~
bl T TP
e
-

-1065¢

ective

=== MPLP for 20 iterations
===MPLP until convergence
---MAP

-1065.51

]

Ob

-10661

-1066.51

ymuwmmmmmm=m==
-

-
-

~1067 e e e e e e e e e m e e memmm——————— 3

_1067.5" . . .
06 15000 1500 2000 2500

MPLP iterations

Figure 2: Comparison of different schedules for adding
clusters to relaxation on a side-chain prediction problem.

the dual objective to the value of the integral solution.
If these are equal, we have found the MAP solution.?
Otherwise, we keep adding triplets.

Our results will show that we often find the MAP solu-
tion to these hard problems by using only a small num-
ber of triplet clusters. This indicates both that triplets
are sufficient for characterizing M(G) near the MAP
solution of these problems, and that our algorithm can
efficiently find the informative triplets.

5.1 Side-Chain Prediction

The side-chain prediction problem involves finding the
three-dimensional configuration of rotamers given the
backbone structure of a protein [18]. This problem
can be posed as finding the MAP configuration of a
pairwise model, and in [18] the TRBP algorithm [13]
was used to find the MAP solution for most of the
models studied. However, for 30 of the models, TRBP
could not find the MAP solution.

In earlier work [12] we used a cutting-plane algorithm
to solve these side-chain problems and found the MAP
solution for all 30 models. Here, we applied our dual
algorithm to the same 30 models and found that it also
results in the MAP solution for all of them (up to a
10~* integrality gap). This required adding between
1 and 27 triplets per model. The running time was
between 1 minute and 1 hour to solve each problem,
with over half solved in under 9 minutes. On average
we added only 7 triplets (median was 4.5), another
indication of the relative ease with which these tech-
niques can solve the side-chain prediction problem.

5In practice, we terminate when the dual objective is
within 10™* of the decoded assignment, so these are ap-
proximate MAP solutions. Note that the objective values
are significantly larger than this threshold.

We also used these models to study different update
schedules. One schedule (which gave the results in
the previous paragraph) was to first run a pairwise
model for 1000 iterations, and then alternate between
adding triplets and running MPLP for 20 more itera-
tions. In the second schedule, we run MPLP to conver-
gence after adding each triplet. Figure 2 shows the two
schedules for the side-chain protein ‘1gsk’, one of the
side-chain proteins which took us the longest to solve
(30 minutes). Running MPLP to convergence results
in a much larger number of overall MPLP iterations
compared to using only 20 iterations. This highlights
one of the advantages of our method: adding a new
cluster does not require solving the earlier problem to
convergence.

5.2 Protein Design

The protein design problem is the inverse of the protein
folding problem. Given a particular 3D shape, we wish
to find a sequence of amino-acids that will be as stable
as possible in that 3D shape. Typically this is done by
finding a set of amino-acids and rotamer configurations
that minimizes an approximate energy.

While the problem is quite different from side-chain
prediction, it can be solved using the same graph struc-
ture, as shown in [18]. The only difference is that now
the nodes do not just denote rotamers, but also the
identity of the amino-acid at that location. Thus, the
state-space here is significantly larger than in the side-
chain prediction problem (up to 180 states per variable
for most variables).

In contrast to the side-chain prediction problems,
which are often easily solved by general purpose in-
teger linear programming packages such as CPLEX’s
branch-and-cut algorithm [5], the sheer size of the
protein design problems immediately limits the tech-
niques by which we can attempt to solve them. Algo-
rithms such as our earlier cutting-plane algorithm [12]
or CPLEX’s branch-and-cut algorithm require solving
the primal LP relaxation at least once, but solving the
primal LP on all but the smallest of the design prob-
lems is intractable [18]. Branch and bound schemes
have been recently used in conjunction with a mes-
sage passing algorithm [4] and applied to similar pro-
tein design problems, although not the ones we solve
here.

We applied our method to the 97 protein design prob-
lems described in [18], adding 5 triplets at a time to
the relaxation. The key striking result of these ex-
periments is that our method found the exact MAP
configuration for all but one of the proteins® (up to a
precision of 107* in the integrality gap). This is es-

SWe could not solve ‘1fpo’, the largest protein.

pecially impressive since, as reported in [18], only 2
of these problems were solvable using TRBP, and the
primal problem was too big for commercial LP solvers
such as CPLEX. For the problem where we did not
find the MAP, we did not reach a point where all the
triplets in the graph were included, since we ran out
of memory beforehand.

Among the problems that were solved exactly, the
mean running time was 9.7 hours with a maximum
of 11 days and a minimum of a few minutes. We
note again that most of these problems could not be
solved using LP solvers, and when LP solvers could
be used, they were typically at least 10 times slower
than message-passing algorithms similar to ours (see
[18] for detailed timing comparisons).

Note that the main computational burden in the algo-
rithm is processing triplet messages. Since each vari-
able has roughly 100 states, passing a triplet message
requires 10% operations. Thus the number of triplets
added is the key algorithmic complexity issue. For the
models that were solved exactly, the median number
of triplets added was 145 (min: 5, max: 735). As
mentioned earlier, for the unsolved model this number
grew until the machine’s memory was exhausted. We
believe however, that by optimizing our code for speed
and memory we will be able to accommodate a larger
number of triplets, and possibly solve the remaining
model as well. Our current code is written mostly in
Matlab, so significant optimization may be possible.

5.3 Stereo Vision

Given a stereo pair of images, the stereo problem is to
find the disparity of each pixel in a reference image.
This disparity can be straightforwardly translated into
depth from the camera. The best algorithms currently
known for the stereo problem are those that minimize
a global energy function [10], which is equivalent to
finding a MAP configuration in a pairwise model.

For our experiments we use the pairwise model de-
scribed in [18], and apply our procedure to the
“Tsukuba” sequence from the standard Middlebury
stereo benchmark set [10], reduced in size to contain
116x154 pixels.

Since there are no connected triplets in the grid graph,
we use our method with square clusters. We calculate
the bound decrease using square clusters, but rather
than add them directly, we triangulate the cycle and
add two triplet clusters. This results in an equivalent
relaxation, but has the consequence that we may have
to wait until MPLP convergence to achieve the guar-
anteed bound improvement.

In the first experiment, we varied the parameters of the

9.237*19

9.2361

u
emimiE iy

9.235 R

Ve a o
9.2341 R

=== Objective
== |nteger solution

9.233

9.232

T TE TL, L dhai

ymimine
.

9.231s

9.23r

9
1000 1050 1100 1150 1200 1250 1300
MPLP iterations

Figure 3: Dual objective and value of decoded integer
solution for one of the reduced “Tsukuba” stereo models,
as a function of MPLP iterations. It can be seen that both
curves converge to the same value, indicating that the MAP
solution was found.

energy function to create several different instances.
We tried to find the MAP using TRBP, resolving ties
using the methods proposed in [8]. In 4 out of 10
cases those methods failed. Using our algorithm, we
managed to find the MAP for all 4 cases.”

Figure 3 shows the dual objective and the decoded
integer solution after each MPLP iteration, for one set
of parameters.

In the results above, we added 20 squares at a time to
the relaxation. We next contrasted it with two strate-
gies: one where we pick 20 random squares (not us-
ing our bound improvement criterion) and one where
we pick the single best square according to the bound
criterion. Figure 4 shows the resulting bound per it-
eration for one of the models. It can be seen that the
random method is much slower than the bound crite-
rion based one, and that adding 20 squares at a time is
better than just one. We ended up adding 1060 squares
when adding 20 at a time, and 83 squares when adding
just one. Overall, adding 20 squares at a time turned
out to be faster.

We also tried running MPLP with all of the square
clusters. Although fewer MPLP iterations were
needed, the cost of using all squares resulted in an
overall running time of about four times longer.

"For one of these models, a few single node beliefs at
convergence were tied, and we used the junction tree algo-
rithm to decode the tied nodes (see [8]).

5

9.2363" 10
9.2363 ""I-I-------¢-----.---a------u il
9.2362 » q
.
.
9.2362 . 7
.
2 02361 | ¢ == -MAP 1
‘8’ ‘,,‘ = = m3dd 20 random squares
2 9.2361] AN = add 20 best squares 4
o s |/=i=iadd 1 best square
9.236 7
9.236 4
9.2359 4
9.2358

1000 1100 1200 1300 1400 1500 1600
MPLP iterations

Figure 4: Comparison of different schedules for adding
squares in one of the stereo problems.

6 Conclusion

In order to apply LP relaxations to real-world prob-
lems, one needs to find an efficient way of adding clus-
ters to the basic relaxation such that the problem re-
mains tractable but yields a better approximation of
the MAP value.

In this paper we presented a greedy bound-
minimization algorithm on the dual LP to solve this
problem, and showed that it has all the necessary
ingredients: an efficient message-passing algorithm,
“warm start” of the next iteration using current be-
liefs, and a monotonically decreasing bound on the
MAP.

We showed that the algorithm works well in practice,
finding the MAP configurations for many real-world
problems that were previously thought to be too dif-
ficult for known methods to solve. While in this pa-
per we focused primarily on adding triplet clusters,
our approach is general and can be used to add larger
clusters as well, as long as as the messages in the dual
algorithm can be efficiently computed.

Finally, while here we focused on the MAP problem,
similar ideas may be applied to approximating the
marginals in graphical models.

Acknowledgements

This work was supported in part by the DARPA
Transfer Learning program and by the Israeli Science
Foundation. D.S. was also supported by a NSF Grad-
uate Research Fellowship.

References

[1] R. Dechter, K. Kask, and R. Mateescu. Iterative join-
graph propagation. In UAI 2002.

[2] G. Elidan, I. Mcgraw, and D. Koller. Residual belief
propagation: informed scheduling for asynchronous
message passing. In UAI 2006.

[3] A. Globerson and T. Jaakkola. Fixing max-product:
Convergent message passing algorithms for MAP LP-
relaxations. In Advances in Neural Information Pro-
cessing Systems 21. MIT Press, 2008.

[4] E.J. Hong and T. Lozano-Pérez. Protein side-chain
placement through MAP estimation and problem-size
reduction. In WABI, 2006.

[5] C. L. Kingsford, B. Chazelle, and M. Singh. Solv-
ing and analyzing side-chain positioning problems us-
ing linear and integer programming. Bioinformatics,
21(7):1028-1039, 2005.

[6] V. Kolmogorov. Convergent tree-reweighted message
passing for energy minimization. IEEE Trans. Pattern
Anal. Mach. Intell., 28(10):1568-1583, 2006.

[7] V.Kolmogorov and M. Wainwright. On the optimality
of tree-reweighted max-product message-passing. In
UAI 2005.

[8] T. Meltzer, C. Yanover, and Y. Weiss. Globally opti-
mal solutions for energy minimization in stereo vision
using reweighted belief propagation. In ICCV, 2005.

[9] E.G. Santos. On the generation of alternative expla-
nations with implications for belief revision. In UAI
1991.

[10] D. Scharstein and R. Szeliski. A taxonomy and evalu-
ation of dense two-frame stereo correspondence algo-
rithms. IJCV, 2002.

[11] Y. Shimony. Finding the MAPs for belief networks is
NP-hard. Aritifical Intelligence, 68(2):399-410, 1994.

[12] D. Sontag and T. Jaakkola. New outer bounds on the
marginal polytope. In Advances in Neural Information
Processing Systems 21. MIT Press, 2008.

[13] M. Wainwright, T. Jaakkola, and A. Willsky. MAP
estimation via agreement on trees: message-passing
and linear programming. IEEE Trans. on Information
Theory, 51(11):3697-3717, 2005.

[14] M. Wainwright and M. I. Jordan. Graphical models,
exponential families and variational inference. Tech-
nical report, UC Berkeley, Dept. of Statistics, 2003.

[15] Y. Weiss, C. Yanover, and T. Meltzer. MAP estima-
tion, linear programming and belief propagation with
convex free energies. In UAI 2007.

[16] M. Welling. On the choice of regions for generalized
belief propagation. In UAI 2004.

[17] M. Welling, T. Minka, and Y. W. Teh. Structured
region graphs: Morphing EP into GBP. In UAI 2005.

[18] C. Yanover, T. Meltzer, and Y. Weiss. Linear pro-
gramming relaxations and belief propagation — an em-
pirical study. JMLR, 7:1887-1907, 2006.

[19] J.S. Yedidia, W.T. Freeman, and Y. Weiss. Construct-
ing free-energy approximations and generalized belief
propagation algorithms. IEEE Trans. on Information
Theory, 51(7):2282— 2312, 2005.

