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Abstract

We present and evaluate new techniques for
designing algorithm portfolios. In our view,
the problem has both a scheduling aspect
and a machine learning aspect. Prior work
has largely addressed one of the two as-
pects in isolation. Building on recent work
on the scheduling aspect of the problem,
we present a technique that addresses both
aspects simultaneously and has attractive
theoretical guarantees. Experimentally, we
show that this technique can be used to im-
prove the performance of state-of-the-art al-
gorithms for Boolean satisfiability, zero-one
integer programming, and A.I. planning.

1 Introduction

Many computational problems that arise in the world
are NP-hard, and thus likely to be intractable from
a worst-case point of view. However, the particular
instances of these problems that are actually encoun-
tered can often be solved effectively using heuristics
that do not have good worst-case guarantees. Typ-
ically there are a number of heuristics available for
solving any particular NP-hard problem, and there is
no one heuristic that performs best on all problem in-
stances. Thus, when solving a particular instance of
an NP-hard problem, it is not clear a priori how to
best make use of the available CPU time.

Specifically, suppose you wish to solve an instance x
of a computational problem, and there are k heuristics
available for solving it. Each heuristic, when run on
instance x, will either solve the instance in finite time
(e.g., by returning a provably correct “yes” or “no”
answer to a decision problem, returning a provably
optimal solution to an optimization problem), or will
run forever without solving it. When solving x, you
will in general have some prior knowledge of how each

of the k heuristics behaves on other instances of the
same computational problem. Naturally, you would
like to solve x as quickly as possible.

In this situation, a natural approach would be to label
each previously-encountered problem instance with a
set of features, and then to use some machine learn-
ing algorithm to predict which of the k heuristics will
return an answer in the shortest amount of time. How-
ever, if we then run the predicted fastest heuristic
and it does not yield an answer after some sufficiently
large amount of time, we might suspect that the ma-
chine learning algorithm’s prediction was a mistake,
and might try running a different heuristic instead.
Alternatively, if the heuristic is randomized, we might
try restarting it and running with a fresh random seed.

We refer to the general problem of determining how to
solve a problem instance in this setting as algorithm
portfolio design [5, 6]. As just illustrated, the problem
has both a machine learning aspect (predicting which
heuristic will solve the instance first) and a scheduling
aspect (determining how long to run a heuristic before
giving up and trying a different heuristic). Previous
work (e.g., [6, 8, 10]) has largely addressed one of the
two aspects in isolation (we discuss previous work in
detail in §6). In this work, we present an approach that
addresses both aspects of the problem simultaneously
and has attractive theoretical guarantees.

We note up front that our work does not address all
possible aspects of the algorithm portfolio design prob-
lem. For example, we ignore the possibility of mak-
ing scheduling decisions dynamically based on the ob-
served behavior of the heuristics (e.g., if a heuristic has
a progress bar that indicates how close it is to solving
the instance). We also ignore the possibility of sharing
information (e.g., upper and lower bounds on the opti-
mal value of the objective function) between heuristics
as they are executing.



1.1 Formal setup

We are given as input a set H of heuristics (i.e., algo-
rithms with potentially large running time) for solving
some computational problem. Heuristic h, when run
on problem instance x, runs for T (h, x) time units
before solving the problem. If h is randomized, then
T (h, x) is a random variable whose outcome depends
on the sequence of random bits supplied as input to h.

We will be interested in interleaving the execution of
heuristics according to schedules of the following form.

Definition (schedule). A schedule S =
〈(h1, τ1), (h2, τ2), . . .〉 is a sequence of pairs
(h, τ) ∈ H × R>0, where each pair (h, τ) repre-
sents running heuristic h for time t.

When interpreting a schedule, we allow each heuristic
h ∈ H to be executed in one of two models (the choice
of model need not be the same for all heuristics). If
h is executed in the suspend-and-resume model, then
a pair (h, τ) represents continuing a run of heuristic h
for an additional τ time units. The run of h is then
temporarily suspended and kept resident in memory,
to be potentially resumed later on. In contrast, if h
is executed in the restart model, then a pair (h, τ)
represents running h from scratch for time τ , and then
deleting the run from memory (if h is randomized, the
run is performed with a fresh random seed).

Abusing notation slightly, we use T (S, x) to denote
the time required to solve problem instance x using
schedule S. We illustrate the definition of T (S, x) with
an example. Consider the schedule

S = 〈(h1, 2), (h2, 2), (h1, 4), . . .〉

illustrated in Figure 1. Suppose H = {h1, h2},
both heuristics are deterministic, and T (h1, x) =
T (h2, x) = 3. Then T (S, x) = 5 if h1 is executed in
the suspend-and-resume model, whereas T (S, x) = 7
if h1 is executed in the restart model. Note that in
calculating T (S, x) when S is executed in the suspend-
and-resume model, we ignore any overhead associated
with context-switching.

h1

h2

time

6 8420

. . .

suspend-and-resume restart

Figure 1: Value of T (S, x) in two execution models.

This class of schedules is quite flexible, and includes
restart-schedules [11] and task-switching schedules [13]
as special cases. A restart schedule is a schedule for
a single randomized heuristic, executed in the restart
model. A task-switching schedule is a schedule for a set
of one or more deterministic heuristics, each executed
in the suspend-and-resume model.

An algorithm portfolio is a way to decide what schedule
to use to solve a particular problem instance.

Definition (algorithm portfolio). An algorithm
portfolio is a procedure φ that, given a problem in-
stance x, returns a schedule φ(x) to use to solve x.

We measure the performance of a schedule S on a prob-
lem instance x in terms of E [T (S, x)], where the ex-
pectation is over the random bits used in the runs that
S performs. We are interested in optimizing this ob-
jective in two settings: offline and online.

In the offline setting, we are given as input a set of
training instances, along with the value of T (x, h) (or
in general, an estimate of its distribution) for each
heuristic h and training instance x. Our goal is to con-
struct an algorithm portfolio (within some class) that
performs optimally on the set of training instances.
We would then use such a portfolio to solve additional,
similar problem instances more efficiently.

In the online setting, we are fed a sequence X =
〈x1, x2, . . . , xn〉 of problem instances one at a time
and must obtain a solution to each instance (via
some schedule) before moving on to the next instance.
When selecting a schedule Si to use to solve in-
stance xi, we have knowledge of the previous instances
x1, x2, . . . , xi−1 but we have no knowledge of xi itself
or of any subsequent instances. In this setting, our goal
is to learn an effective algorithm portfolio on-the-fly,
again with the aim of minimizing average CPU time.

1.2 Summary of results

In §2, we review recent results on a pure scheduling
approach to the algorithm portfolio design problem.
For the offline setting, the main result is a greedy al-
gorithm that returns a 4-approximation to the opti-
mal schedule; achieving a 4− ε approximation for any
ε > 0 is NP-hard. For the online setting, the main
result is an online schedule-selection algorithm whose
worst-case performance guarantees converge to those
of the offline greedy approximation algorithm, asymp-
totically as the number of instances grows large. Note
that the latter guarantee does not require any statis-
tical assumptions about the sequence of problem in-
stances.

In §3, we discuss how the online algorithm discussed
in §2 can be combined with algorithms for solving the



so-called sleeping experts problem in order to take ad-
vantage of Boolean features of an instance when select-
ing a schedule. This approach yields an online algo-
rithm that, simultaneously for each feature f , is guar-
anteed to perform near-optimally (i.e., average CPU
time asymptotically at most 4 times that of any sched-
ule) on the subset of instances for which f is true.

In §4, we evaluate these techniques experimentally,
and show that they can be used to improve the perfor-
mance of state-of-the-art heuristics for Boolean satis-
fiability, A.I. planning, and zero-one integer program-
ming.

The results just described apply only to the objec-
tive of minimizing average CPU time. In §5, we con-
sider the case in which each heuristic is an anytime
algorithm that returns solutions of increasing quality
over time. We describe how our results for minimizing
average CPU time can be generalized to yield sched-
ules with good anytime behavior, and demonstrate the
power of this approach by applying it to state-of-the-
art heuristics for zero-one integer programming.

2 Background

In this section we review recent results on a pure
scheduling approach to algorithm portfolio design.
These results form the basis of the algorithms and ex-
perimental results presented in the rest of the paper.

2.1 Offline greedy approximation algorithm

Suppose we collect a set of training instances X , and
wish to compute the schedule that performs optimally
over the training instances (i.e., the schedule S that
minimizes

∑
x∈X E [T (S, x)]). We assume that for

each heuristic h ∈ H and training instance x ∈ X , the
distribution of T (h, x) is known exactly (in practice,
we would have to estimate it by performing a finite
number of runs).

Building on previous work on the Min-Sum Set
Cover problem [3], Streeter et al. [16, 17] devel-
oped a greedy approximation algorithm for this of-
fline problem. Let f(S) denote the sum, over all in-
stances x ∈ X , of the probability that executing sched-
ule S yields a solution to instance x. The schedule
G = 〈g1, g2, . . .〉 returned by the greedy approxima-
tion algorithm can be defined inductively as follows:
G1 = 〈〉, Gj = 〈g1, g2, . . . , gj−1〉 for j > 1, and

gj = arg max
a=(h,τ)∈H×R>0

{
f(Gj + a)− f(Gj)

τ

}
(1)

where Gj+a denotes the schedule obtained by append-
ing the pair a to Gj .1 Informally, G is constructed by

1 Evaluating the arg max in (1) requires considering

greedily appending a run a = (h, τ) to the schedule
so as to maximize the expected number of instances a
solves per unit time.

The performance of G is summarized by the follow-
ing theorem. The theorem shows that, assuming P 6=
NP, the greedy schedule has optimal worst-case per-
formance from an approximation standpoint (among
schedules that can be computed in polynomial time).

Theorem 1 (Streeter et al., 2007a; 2007b). G is a
4-approximation to the optimal schedule. That is,

∑
x∈X

E [T (G, x)] ≤ 4 ·min
S

{∑
x∈X

E [T (S, x)]

}
.

Furthermore, for any ε > 0, obtaining a 4− ε approx-
imation to the optimal schedule is NP-hard (even in
the special case where all heuristics are deterministic).

2.2 Online greedy algorithm

In the online setting, a sequence 〈x1, x2, . . . , xn〉 of
problem instances arrive one at a time, and one must
solve each instance xi via some schedule (call it Si)
before moving on to instance xi+1. When selecting Si,
one has no knowledge of xi itself. After solving xi, one
learns only the outcomes of the runs that were actu-
ally performed when executing Si. As in the offline
setting, the goal is to minimize the average CPU time
required to solve each instance in the sequence.

Recently, Streeter and Golovin [15] developed an on-
line algorithm for an abstract scheduling problem that
includes this online problem as a special case. For the
results of [15] to apply, we must make some additional
assumptions. First, we assume that T (h, xi) is an in-
teger for all heuristics h and instances xi. Second, we
assume that the CPU time the online algorithm uses
up on any particular instance xi is artificially capped
at some value B (without such a cap, the online al-
gorithm could be forced to spend an arbitrarily large
amount of CPU time solving a single instance, and we
could prove no meaningful bounds on its performance).

The algorithm presented in [15] is called OG, for “on-
line greedy”, and can be viewed as an online version
of the greedy approximation algorithm described in
§2.1. The following theorem shows that its worst-
case performance guarantees approach those of the of-
fline greedy algorithm, asymptotically as the number
of problem instances approaches infinity. The theorem
can be proved as a corollary of [15, Theorem 11] (for
a formal derivation, see [14, Chapter 3]).

O (r |X |) values of τ per heuristic, where r is the maxi-
mum number of runs used to estimate the distribution of
T (h, x). For more details, see [14].



Theorem 2 (Streeter and Golovin, 2007). Algo-
rithm OG [15], run with exploration probability γ =
Θ
(
n−

1
4

)
, has the following guarantee. Let Ti =

min {B, T (Si, xi)}, for some B > 0. Then

n∑
i=1

E [Ti] ≤ 4 ·min
S∈S

{
n∑
i=1

E [T (S, x)]

}
+O

(
n

3
4

)
.

3 Exploiting Features

The algorithms referred to in theorems 1 and 2 pro-
vide no mechanism for tailoring the choice of sched-
ule to the particular problem instance being solved.
In practice, there may be quickly-computable features
that distinguish one instance from another and sug-
gest the use of different heuristics. In this section, we
describe how existing techniques for solving the so-
called sleeping experts problem can be used to exploit
such features in an attractive way.

The sleeping experts problem is defined as follows.
One has access to a set of M experts. On each day,
a given expert is either awake, in which case the ex-
pert dispenses a piece of advice, or the expert is asleep.
At the beginning of day i, one must select an awake
expert whose advice to follow. Following the advice
of expert j on day i incurs a loss `ij ∈ [0, 1]. At
the end of day i, the value of the loss `ij for each
(awake) expert j is made public, and can be used as
the basis for making choices on subsequent days. Note
that the historical performance of an expert does not
imply any guarantees about its future performance.
Remarkably, randomized expert-selection algorithms
nevertheless exist that achieve the following guaran-
tee: simultaneously for each j, one’s expected loss on
the subset Dj of days when j was awake is at most∑
i∈Dj

`ij + O
(√
n logM + logM

)
. Thus, when using

such an algorithm2, one asymptotically performs as
well as any fixed expert on the subset of days that
expert was awake.

Suppose that each problem instance xi is labeled with
the values of M Boolean features. We will exploit such
features by applying the sleeping experts algorithm in
a standard way. We create, for each feature j, a copy
Aj of the online schedule-selection algorithm OG that
is only run on instances where feature j is true. We
then use an algorithm for the sleeping experts problem
to select among the schedules returned by the various
copies, as described in the pseudo-code for OGse. Due
to space constraints, the pseudo-code refers to [15, 17]

2See [2] for a description of such an algorithm. The
algorithm maintains, for each expert, a weight that is ad-
justed based on its performance relative to other experts.
On each day, experts are selected with probability propor-
tional to their weights.

for the details of certain steps. As in §2.2, we use B
to denote an artificial bound on CPU time.

Algorithm OGse

Initialization: let E be a copy of the sleeping
experts algorithm of [2]; and for each feature j, let
Aj be a copy of OG [15].

For i from 1 to n:
1. Let Fi be the set of features that are true

for xi. For each feature j ∈ Fi, use Aj to
select a schedule Si,j .

2. Use E to select a feature (expert) ji ∈ Fi,
and select the schedule Si = Si,ji .

3. With probability γ = Θ
(
n−

1
4

)
, explore

as follows. Using the procedure of [17],
run each heuristic for time O (B logB)
in order to obtain a function f̂ such
that for any schedule S, E

[
f̂(S)

]
=

E [min {B, T (S, xi)}]. Feed f̂ back to each
Aj , as described in [15]. Finally, for each j,
set `ij = 1

B f̂(Si,j). Otherwise (with proba-
bility 1− γ) set `ij = 0 for all j.

4. For each j ∈ Fi, feed back `ij to E as the loss
for expert j.

The performance of OGse is summarized by the fol-
lowing theorem.

Theorem 3. Let Xj be the subset of instances for
which feature j is true. Let T (x) be the CPU time
spent by OGse on instance x. Then, simultaneously
for each j, we have

E

∑
x∈Xj

T (x)

 ≤ 4·min
S

∑
x∈Xj

E [T (S, x)]

+O
(
n

3
4

)
.

Proof. As already discussed, the algorithm E used as
a subroutine in OGse guarantees that, for any j,∑

x∈Xj

`iji ≤
∑
x∈Xj

`ij +R (2)

where R = O
(√
n logM + logM

)
. Define Li(S) =

E [min {B, T (S, xi)}]. Thus E
[
`ij
]

= γ
BLi(Si,j). Tak-

ing the expectation of both sides of (2) yields

∑
x∈Xj

Li(Si) ≤
∑
x∈Xj

Li(Si,j) +
B

γ
R .



Note that B
γ R = O

(
n

3
4

)
(for constant M). At the

same time, by Theorem 2 we have

∑
x∈Xj

Li(Si,j) ≤ 4 ·min
S

∑
x∈Xj

E [T (S, x)]

+O
(
n

3
4

)
.

Finally, because γ = Θ
(
n−

1
4

)
, we have

E
[∑

x∈Xj
T (x)

]
≤
∑
x∈Xj

Li(Si) + O
(
n

3
4

)
. Putting

these equations together proves the theorem.

Note that Theorem 3 provides a very strong guaran-
tee. For example, if each instance is labeled as ei-
ther “large” or “small” and also as either “random” or
“structured”, then the performance of OGse on large
instances will be nearly as good as that of the opti-
mal schedule for large instances, and simultaneously
its performance on structured instances will be nearly
as good as that of the optimal schedule for structured
instances (even though these subsets of instances over-
lap, and the optimal schedule for each subset may be
quite different).

4 Experimental Evaluation

In this section, we evaluate the algorithms presented
in the previous section experimentally using data from
recent solver competitions.

4.1 Solver competitions

Each year, various computer science conferences hold
competitions designed to assess the state of the art
solvers in some problem domain. In these competi-
tions, each submitted solver is run on a sequence of
problem instances, subject to some per-instance time
limit. Solvers are awarded points based on the in-
stances they solve and how fast they solve them, and
prizes are awarded to the highest-scoring solvers.

The experiments reported here make use of data from
the following three solver competitions.

1. SAT 2007. Boolean satisfiability is the task of
determining whether there exists an assignment
of truth values to a set of Boolean variables that
satisfies each clause (disjunction) in set of clauses.
SAT solvers are used as subroutines in state-of-
the-art algorithms for hardware and software ver-
ification and A.I. planning. The SAT 2007 com-
petition included industrial, random, and hand-
crafted benchmarks.

2. IPC-5. A.I. planning is the problem of finding a
sequence of actions (called a plan) that leads from

a starting state to a desired goal state, according
to some formal model of how actions affect the
state of the world. We used data from the optimal
planning track of the Fifth International Planning
Competition (IPC-5), in which the model of the
world is specified in the STRIPS language and the
goal is to find a plan with (provably) minimum
length.

3. PB’07. Pseudo-Boolean optimization is the task
of minimizing a function of zero-one variables sub-
ject to algebraic constraints, also known as zero-
one integer programming. On many benchmarks,
pseudo-Boolean optimizers (which are usually
based on SAT solvers) outperform general integer
programming packages such as CPLEX [1]. The
PB’07 evaluation included both optimization and
decision (feasibility) problems from a large num-
ber of domains, including formal verification and
logic synthesis.

Our experiments for each solver competition followed
a common procedure. First, we determined the value
of T (h, x) for each heuristic h and benchmark instance
x using data available on the competition web site (we
did not actually run any of the heuristics). The heuris-
tics considered in these competitions are deterministic
(or randomized, but run with a fixed random seed), so
T (h, x) is simply a single numeric value. If a heuris-
tic did not finish within the competition time limit,
then T (h, x) is undefined. Second, we discarded any
instances that none of the heuristics could solve within
the time limit.

Given a schedule S and instance x, we will not gener-
ally be able to determine the true value of T (S, x),
due to the fact that T (h, x) is undefined for some
heuristics. We can, however, determine the value of
min {B, T (S, x)}, where B is the competition time
limit. We use this lower bound in all the comparisons
that follow.

4.2 Number of training instances required in
practice

In this section we investigate how the number of avail-
able training instances affects the quality of a schedule
computed using those training instances. To do so, we
adopted the following procedure. Given a set of n in-
stances, we select m < n training instances at random,
then use the greedy algorithm from §2.1 to compute
an approximately optimal schedule3 for the training
instances. We then use this schedule to solve each of

3For all solver competitions, the number of heuristics
was large enough that computing an optimal schedule via
dynamic programming was impractical.



the n−m remaining instances, and record the average
CPU time it requires. We examined all values of m
that were powers of 2 less than n. For each value of
m, we repeated the experiment 100 times and averaged
the results.
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Figure 2: Experimental results for PB’07 data.

Figure 2 depicts the results for optimization problems
from the “small integers” track of the PB’07 compe-
tition. The figure shows average CPU time (on test
instances) as a function of the number of training
instances, for both versions of the greedy algorithm
(suspend-and-resume and restart). For comparison,
the figure also shows the average CPU time required
by the fastest individual solver, as well as a schedule
that simply ran all solvers in parallel (i.e., if there are
k solvers, each one receives a 1

k fraction of the CPU
time).

Figure 2 has several noteworthy features. First, only a
small number of training instances (in this case 16) are
required in order to produce a schedule that outper-
forms both the fastest individual solver and the näıve
parallel schedule. Second, with a sufficient number of
training instances, the gap between the performance of
the greedy schedules and that of the fastest individual
solver is significant (in this case, more than a factor of
2). Third, the suspend-and-resume model offers only a
relatively small advantage over the restart model. We
have observed these same three trends in a number of
other cases (e.g., see Figure 3).

We note that previous work (e.g., [16]) gave learning-
theoretic bounds on the number of training instances
required to learn a near-optimal schedule; however,
these worst-case upper bounds are quite pessimistic
relative to our experimental results.

4.3 Exploiting features

We now examine the benefit of using Boolean features
to help decide which schedule to use for solving a par-

ticular problem instance. We present results for two
instance sets: the random category of the SAT 2007
competition, and the optimal planning track of IPC-5.
For the SAT instances, we labeled each instance with
Boolean features based on the size of the formula, the
ratio of clauses to variables, and the number of liter-
als per clause. For the planning instances, we used
features based on the planning domain, the number
of goals, the number of objects, and the number of
predicates in the initial conditions.

To evaluate the effect of features, we used a procedure
similar to the one used in the experiments summarized
in Figure 2. Given a data set, we sample m training
instances at random, and examine how average per-
formance (on test instances) varies as a function of m.
For each value of m, we again repeated the experi-
ment 100 times and averaged the results. In addition
to evaluating the greedy algorithm from §2.1, we now
evaluate two other approaches. The first approach,
which we refer to as “Greedy w/features”, uses the al-
gorithm OGse from §3 to select (suspend-and-resume)
schedules as follows. First, we run OGse on each of
the m training instances, with exploration probability
γ = 1. We then run the algorithm on each of the n−m
test instances, with exploration probability γ = 0 (so
the algorithm receives no feedback on test instances).
The second approach, which we refer to as “Features
only” below, is similar except that it uses the sleep-
ing experts algorithm of [2] to select a single heuristic
(rather than a schedule), and runs that heuristic until
it obtains a solution. Here we focus on performance as
a function of the number of training instances, because
the number of benchmark instances was typically too
small to allow for good performance in the online set-
ting of §2.2.

Figures 3 (A) and (B) present our results for the SAT
and planning instances, respectively. Both graphs ex-
hibit two noteworthy features. First, when the number
of training instances is relatively small, a pure schedul-
ing approach outperforms a purely feature-based ap-
proach; but as the number of training instances in-
creases, the reverse is true. This behavior makes in-
tuitive sense: when the number of training instances
is small, committing to a single heuristic based on
the training data is a very risky thing to do, and
thus a purely feature-based approach can perform very
poorly (e.g., worse than the näıve parallel schedule);
as the number of training instances increases this be-
comes less of a risk. Second, in all cases, an ap-
proach that uses features to select schedules outper-
forms either a pure scheduling or purely feature-based
approach.

Figure 4 depicts the (suspend-and-resume) schedule
returned by the greedy algorithm when all available
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Figure 3: Experimental results for (A) SAT’07 data,
random category and (B) IPC-5, optimal track.

SAT instances are used as training data. As indicated
in the figure, the greedy schedule makes use a vari-
ety of different SAT solvers, and spends a significant
amount of time running solvers whose overall average
CPU time did not put them at the top of the compe-
tition.

5 Combining Anytime Algorithms

Thus far, we have thought of a heuristic as a program
that, given a problem instance, runs for some fixed
amount of time before definitively solving it (e.g., by
returning a provably optimal solution). Now suppose
instead that our heuristics are anytime algorithms that
return solutions of increasing quality over time. In this
case, we would like to construct a schedule that yields
near-optimal solutions quickly, in addition to yielding
provably optimal solutions quickly.

One simple way to do this is as follows. Define, for each
instance, a set of objectives to achieve (e.g., finding a
solution with cost at most α times optimal, for each
α ∈ {2, 1.5, 1.01}). For simplicity, consider the offline
setting described in §2.1. For each training instance x,
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Figure 4: Schedule for SAT’07 data, random category.
The solvers are listed in ascending order of (the lower
bound on) average CPU time.

create a new set of fictitious instances x̃1, x̃2, . . . , x̃k,
one for each of the k objectives. For each heuristic h,
define T (h, x̃i) to be the time that h requires to achieve
the ith objective. Then, the average time a schedule
or heuristic takes to “solve” the fictitious instances is
simply the average time it takes to achieve each of the k
objectives on the original instances. If some objectives
are more important than others, we can weight the
fictitious instances accordingly (the results described
in §2 readily extend to weighted sets of instances).

To evaluate this approach, we revisit the experiments
performed in §4 using the PB’07 competition data, but
now we measure the performance of a schedule as the
average of (i) the time the schedule takes to find a fea-
sible solution, (ii) the time the schedule takes to find
an optimal solution, and (iii) the time the schedule
takes to prove optimality (or to prove that the prob-
lem is infeasible).

Table 1 summarizes the results of these experiments.
For each track of the PB’07 competition and for each
of the three objectives, we define a speedup factor
equal to the (lower bound on) average CPU time re-
quired by the fastest individual heuristic to achieve
that objective, divided by the corresponding quantity
for the (suspend-and-resume) greedy schedule, where
the greedy algorithm is evaluated under leave-one-out
cross-validation. Note that in general, the three dif-
ferent speedup factors listed for each track represent a
comparison against three different heuristics.

Table 1 shows that for all three tracks, we were able to



generate a schedule that simultaneously outperformed
each of the original heuristics in terms of each of the
three objectives we considered. The results of these
experiments could potentially be improved by using
features4 as in §4.3, and by sharing upper and lower
bounds on the optimal objective function value among
heuristics as they are discovered.

Table 1: Speedup factors for experiments with anytime
algorithms, using PB’07 data.

Track Speedup Speedup Speedup
(prove opt) (find opt) (find feas)

Sm. ints 2.5 2.9 3.7
Sm. ints
non-linear

1.6 1.3 1.4

Big ints. 1.2 1.5 1.4

6 Related Work

Previous work on algorithm portfolio design has al-
most always focused on a single aspect of the prob-
lem. In particular, almost all previous theoretical work
has focused on the scheduling aspect of the problem,
whereas the bulk of the experimental work has focused
on the machine learning aspect of the problem. We
now discuss previous work on each of these two as-
pects of the problem in greater detail.

6.1 Scheduling approaches

A number of papers have considered the problem of
coming up with a schedule for allocating time to runs
of one or more algorithms.

The earliest work on this problem measured the per-
formance of a schedule in terms of its competitive ra-
tio (i.e., the time required to solve a given problem
instance using the schedule, divided by the time re-
quired by the optimal schedule for that instance). Re-
sults of this work include the universal restart schedule
of Luby et al. [11] and the schedule of Kao et al. [9]
for allocating time among multiple deterministic algo-
rithms subject to memory constraints.

Subsequent work focused on developing schedules tai-
lored to a particular class of problems. Gomes et al.
[7] demonstrated that (then) state-of-the-art heuris-
tics for Boolean satisfiability and constraint satisfac-
tion could be dramatically improved by randomizing
the heuristic’s decision-making heuristics and running
the randomized heuristic with an appropriate restart

4We do not present experiments that use features in
conjunction with the PB’07 data because we could not
readily find a suitable set of features.

schedule. Huberman et al. [8] and Gomes et al. [6]
combined multiple algorithms into a portfolio by run-
ning each algorithm in parallel at equal strength and
assigning each algorithm a fixed restart threshold.

To fully realize the power of this approach, one must
solve the problem of computing a schedule that per-
forms well on average over a given set of problem
instances collected as training data. Independently,
Petrik and Zilberstein [12] and Sayag et al. [13] ad-
dressed this problem for two classes of schedules: task-
switching schedules and resource-sharing schedules.
For each of these two classes of schedules, the prob-
lem of computing an optimal schedule is NP-hard, and
accordingly their algorithms have exponential running
time (as a function of the number of algorithms being
scheduled). Recently, Streeter et al. [16] presented a
polynomial-time 4 approximation algorithm for com-
puting task-switching schedules, as reviewed in §2.1.

6.2 Machine learning approaches

Another approach to algorithm portfolio design is to
use features of instances to attempt to predict which
algorithm will run the fastest on a given instance, and
then simply run that algorithm exclusively. As an ex-
ample of this approach, Leyton-Brown et al. [10] use
least squares regression to estimate the running time of
each algorithm based on quickly-computable instance
features, and then run the algorithm with the smallest
predicted running time. Xu et al. [18] presented an im-
proved version of this approach that used a two-step
prediction scheme in which the answer to a decision
problem is predicted using a binary classifier, and run
times are then estimated conditioned on the classifier’s
prediction.

6.3 Integrated approaches

In addition to the work just described, there has been
previous work that addresses both the scheduling and
machine learning aspects of the algorithm portfolio de-
sign problem simultaneously. For example, Gagliolo
and Schmidhuber [4] presented an approach for allo-
cating CPU time among heuristics in an online set-
ting, based on statistical models of the behavior of the
heuristics. Although their approach has no rigorous
performance guarantees and would not perform well
in the worst-case online setting considered in this pa-
per, it would be interesting to compare their approach
to ours experimentally.

7 Conclusions

This paper presented a new technique for address-
ing the scheduling and machine learning aspects of



the algorithm portfolio design problem, and evaluated
the technique experimentally. Our main experimental
findings can be summarized as follows.

1. In a number of well-studied problem domains, ex-
isting state-of-the-art heuristics can be combined
into a new and faster heuristic simply by collect-
ing a few dozen training instances and using them
to compute a schedule for interleaving the execu-
tion of the existing heuristics.

2. State-of-the-art anytime algorithms for solving
optimization problems can be combined, via a
schedule, into an algorithm with better anytime
performance.

3. Instance-specific features can be used to gener-
ate a custom schedule for a particular problem
instance. Using this approach can result in better
performance than using either a pure scheduling
approach or a purely feature-based approach.

As suggested in §1, our experimental results could po-
tentially be improved in at least two ways. First, we
could attempt to predict a heuristic’s remaining run-
ning time based on its current state and adapt our
schedule accordingly. Second, we could share infor-
mation among heuristics during the process of solving
an instance (e.g., when solving optimization problems,
the heuristics could share upper and lower bounds on
the optimal objective function value).
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