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Abstract

A Chain Event Graph (CEG) is a graphical
model which is designed to embody conditional
independencies in problems whose state spaces
are highly asymmetric and do not admit a
natural product structure. In this paper we
present a probability propagation algorithm
which uses the topology of the CEG to build a
transporter CEG. Intriguingly, the transporter
CEG is directly analogous to the triangulated
Bayesian Network (BN) in the more conven-
tional junction tree propagation algorithms
used with BNs. The propagation method uses
factorization formulae also analogous to (but
different from) the ones using potentials on
cliques and separators of the BN. It appears
that the methods will be typically more effi-
cient than the BN algorithms when applied to
contexts where there is significant asymmetry
present.

1 INTRODUCTION

Based on an event tree, a Chain Event Graph (CEG)
is a more expressive alternative to a discrete Bayesian
Network (BN), embodying collections of conditional
independence statements in its topology. In Anderson
and Smith (2008) it is shown not only how asymme-
tries in a problem’s sample space can be represented
explicitly through the topology of its CEG, but also
how it can express a much wider range of types of con-
ditional independence statement not simultaneously
expressible through a single BN. As with the BN, the
CEG of an hypothesised model can be interrogated us-
ing natural language before the graph is embellished
with probabilities. In Thwaites and Smith (2006) and
Riccomagno and Smith (2005) we demonstrate how
the CEG can also be used to represent and analyse
various causal hypotheses. In this paper we continue
the development of CEGs by demonstrating how the
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graph provides a useful structure for fast probability
propagation in asymmetric models.

It has been noted that the CEG is an especially power-
ful framework for inference when a probability model
is highly asymmetric and elicited through a descrip-
tion of how situations unfold. Although theoretically
a BN can be used in this context, the clique probabil-
ity tables are then very sparse and contain many ze-
ros or repeated probabilities. This impedes fast prop-
agation algorithms and has led to the development
of many context specific variants of BNs (Boutilier
et al 1996, McAllester et al 2004, Poole and Zhang
2003, Salmeron et al 2000), often based on trees within
cliques. These developments provoke the question as
to whether a single tree might be used for propagation
instead of the BN. Now obviously the event tree itself
expresses no conditional independencies in its topol-
ogy and these independencies are the building blocks
of current propagation algorithms. However, unlike
the event tree, the CEG expresses a fairly comprehen-
sive collection of conditional independencies. In this
paper we demonstrate the surprising fact that there
is a direct analogue between a distribution on a BN
expressed as a product of potentials supported by a
graph of cliques and separators, and propagation al-
gorithms on CEGs using the distributions on the chil-
dren of the CEG’s non-leaf nodes and marginal likeli-
hoods on the vertices themselves. This enables us to
develop fast propagation algorithms that use a single
graph, the transporter CEG — analogous to a triangu-
lated BN — as its framework. This framework is highly
efficient for asymmetric/non-product-space contexts,
and in particular does not involve propagating zeros
in sparse but large probability tables, nor continually
repeating the same calculations, which would be the
case if we were to use the BN as a framework in this
sort of environment with a naive BN propagation al-
gorithm.

In the next section we formally define the transporter
CEG C(T) of a hypothesised probability tree 7. In



section 3 we present an algorithm analogous to that
of Cowell and Dawid (1992) for a BN where condi-
tional probability tables associated with the children
of a given vertex of the CEG take the role of cliques,
and vertex probabilies take the role of separators. In
section 4 we demonstrate the efficiency of this algo-
rithm with a simple example.

2 PROBABILITY TREES AND
CHAIN EVENT GRAPHS

Probability trees (Shafer 1996), and their control ana-
logues decision trees, have been found to be a very nat-
ural and expressive framework for probability and de-
cision problems, and they provide an excellent frame-
work for describing sample space asymmetry and inho-
mogeneity in a given context (see for example French
and Insua (2000)). We start with an event tree 7' with
vertex set V(T') and (directed) edge set E(T). Hence-
forth call the tree’s non-leaf vertices {v} situations,
and denote this set of vertices S(T') C V(T). We can
convert an event tree into a probability tree by specify-
ing a transition matrix from its vertices V(T'), where
the absorbing states correspond to the leaf vertices.
Transition probabilities from a situation are zero ex-
cept for transitions to one of that situation’s children.
This makes the transition matrix upper triangular.
Such a matrix would look like the one in Table 1 which
shows part of the matrix for the problem described in
Example 1. Note that each transition probability can
be identified by an edge on the tree.

Table 1: Part of the transition matrix for Example 1

vo v v w3 vi v v v vl vl
Vo 0 01 02 93 0 0 0 0 0 0
vy, 0 0 0 0 65 0 O 0O O 04
vo 0 0 0 0O 0 6 0 67 O 0
vg 0 0 0 0O O 0 fs 0 6y 0
One way of seeing conditional independence

statements on a BN is as identities in certain vectors of
conditional probabilties — explicitly those probability
vectors associated with different ancestor configura-
tions but the same parent configuration of a variable
in the BN (Riccomagno and Smith 2007). There is a
large class of models where the probabilities in some
of the rows of the transition matrix can be identitifed
with each other. The CEG is a topological representa-
tion of this class of models, and the transporter CEG
defined below is a subgraph of the CEG.

Let T'(v;), i = 1,2 be the unique subtrees whose roots
are the situations v;, and which contain all vertices
after v; in T'. Say v; and wvs are in the same position
w if:

1. the trees T'(vy) and T'(vq) are topologically iden-
tical.

2. there is a map between T'(v1) and T'(vy) such that
the edges in T'(vy) are annotated, under that map,
by the same (possibly unknown) probabilities as
the corresponding edges in T'(v1).

It is easily checked that the set W(T') of positions w
partitions S(7T"). Furthermore, somewhat more sub-
tlely, if v1,v2 € w and v;; € V(T'(v;)), then the vertex
sets of T'(v;) i = 1,2 are mapped on to each other by
this map, and v;; € w; ¢ = 1,2 for some position w;
(providing v;; is not a leaf-vertex in either subtree).
For details of this property see Anderson and Smith
(2008).

We now draw a new graph to depict both the sample
space of T and certain conditional independence state-
ments. The transporter CEG C(T) is a directed graph
whose vertices W(C(T)) are W(T) U {wso }. There is
an edge (e € E(C(T))) from wy to wa # wy for each
situation vs € wy which is a child of a fixed repre-
sentative v; € w; for some v; € S(T), and an edge
from w; to wy, for each leaf node v € V(T) which is
a child of some fixed representative v; € w; for some
vy € S(T). The transporter CEG (henceforth labelled
simply as C) is the subgraph of a CEG (defined in An-
derson and Smith (2008)) where all undirected edges
in the CEG are omitted. The relationship between the
transporter CEG and the CEG is directly analogous
to the relationship between a triangulated BN and the
original BN. Certain conditional independence state-
ments that can be lost through conditioning are simply
forgotten so that an homogeneous propagation algo-
rithm can be constructed on the basis of the enduring
conditional independencies. Unlike the BN, this CEG
can have many edges between two vertices and always
has a single sink vertex wy,. Although typically hav-
ing many fewer vertices than T, it retains a depiction
of the sample space structure of 7. Thus it is easy
to check that the set of root to leaf paths of the tree
(representing the set of all possible unfoldings of the
history of a unit) are in one to one correspondence
with the set of root to sink paths on the transporter
CEG. The CEG-construction process is illustrated in
Example 1.

Example 1

Consider the tree in Figure 1, which has 16 atoms
(root-to-leaf paths). Note that as the subtrees rooted
in the vertices {v}} are the same, and those rooted in
{vi} are the same, the distribution on the tree can be
stored using 7 conditional tables which contain 16 (9
free) probabilities.

Our transporter CEG (Figure 2) is produced by com-
bining the vertices {v}} into one position w, the ver-



tices {vi} into one position ws, the vertices {vi} into
one position wg, and all leaf-vertices into a single sink-
node ws,. The full CEG for our example is simple — it
has no undirected edges, and is identical to the trans-
porter CEG C'. For a simple CEG, all the conditional
independencies inherent in the problem are conveyed
by the transporter CEG.

6,=0.65

(9195 + 9295 + eﬂee)

Wa 610=0, 65

Wo

08,,=0.7

ws (85) ws (8,8, + 6;6) W (8,878, + 6;840,,)

Figure 2: Transporter CEG for Example 1

Figure 2 shows the probabilities of reaching each po-
sition w (the event reaching w, denoted A(w), is the
union of all root-to-sink paths passing through w). It
also shows each edge-probability =.(w' | w)
(= m(Ale(w,w")) | A(w)), where A(e(w,w’)) is the
union of all root-to-sink paths utilising the edge
e(w,w')).

The problem represented by the tree in Figure 1 is
asymmetric in that not all the root-to-leaf paths are
of the same length, and also in the local structure as-
sociated with its vertices. We do not know whether
the vertices {v}} are related in any contextual way to
the vertices {vi} or {vi}, and hence we cannot obvi-
ously define variables on the sigma-algebra of the tree
to allow us to represent the problem as a BN. Even
supposing we were able to represent the problem in

such a way, the conditional independencies embodied
in the problem (and in our transporter CEG) cannot
be efficiently coded in a BN without introducing ta-
bles with many zeros. Consequently, even in this very
simple example we have efficiency gains in storing this
distribution over using a saturated model, a BN, or a
tree.

3 A SIMPLE PROPAGATION
ALGORITHM

3.1 THE FRAMEWORK

To specify the joint distribution of all random vari-
ables measurable with respect to a CEG we simply
need to specify the vector of conditional probability
mass functions associated with each of its positions.
The first step of our propagation algorithm is analo-
gous to the triangulation step for a BN, which allows
us to retain all conditional independence properties at
the cost of a possible loss of efficiency. To do this we
ignore conditional independence statements coded by
the undirected edges of the CEG and work only with
the subgraph consisting of its positions, together with
its directed edges, but not its undirected edges — our
transporter CEG C.

For each position w € W = W(C)\{w} we store a
vector of probabilites w(w) = {m.(w' | w) | e(w,w’) €
E(w)} where E(w) C E(C) is the set of all edges
emanating from w. m(w) is of course a conditional
probability distribution. We let X (w) be the random
variable taking values on {1,2,...,n(E(w))} (where
n(E(w)) is the number of edges emanating from w)
whose probability mass function is given by the com-
ponents of 7(w) taken in order. The positions w € W
take the role of the cliques in a triangulated BN, whilst
the vectors {m(w) | w € W} are analogous to the clique
probability tables.

We can now specify the probability 7y of every atom A
(a root to sink path of C, of length n()\)) as a function
of {w(w) | we W} and C. If:

A= (wg = U))\[O], 6)\[1]7 wk[l]s ) ez\[n()‘)]s woo)

then
n(A)
T\ = H m(exli])
i=1

where m(ey[i]) is a component of the probability vec-
tor w(wya[i —1]), 1 < i < n(A\). It follows that the
distribution of any random variable measurable with
respect to C' can be calculated from {7 (w) | w € W}.

3.2 COMPATIBLE OBSERVATIONS

Recall that propagation algorithms for BNs based on
triangulation are only designed to propagate informa-
tion that can be expressed in the form



O(A) = {X; € A;} for some subsets {A4;} of the
sample spaces of {X;} the vertex-variables of the BN.
Propagating information about the value of some gen-
eral function of the vertex variables using local mes-
sage passing is not generally possible, because condi-
tioning on the values of such a function can destroy the
conditional independencies on which the local steps of
the propagation algorithm depend for their validity.

In the same way the types of observation we can ef-
ficiently propagate using C and {w(w) | w € W}
needs to be constrained. In general an observation
can be identified with a subset A of the set of all
root to sink paths {A}. The most obvious constrain-
ing assumption on A (and the one we will henceforth
make in this paper) about what we might learn is
that our observation A can be identified with having
learned that {X (w) € A(w)} for some subsets {A(w)}
of the sample spaces of the position random variables
{X(w)}. Call such a set C'—compatible. Note that A
is C'—compatible if and only if there exists possibly
empty subsets {Ex(w) | w € W} such that

A ={)\| ex € Exr(w) for some w € W, for each edge
ex on the path A in C}

So we can identify a compatible observation with the
set of edges Ex = ,ecw Ea(w) C E(C). We note
that the set of compatible observations is large and
in particular when the CEG is expressible as a BN
contains all sets of the form O(A) defined above.

Example 2

Consider:

A = {A | (SN € {el(wOawl)a62(w07w2)7e4(w17w00)7
es(wl,w4),66(w2,w4),67(w2,w5),€10(w4,woo),

611(11)4, woo); 614(’11)5, wﬁ): 615(’[1}6,'[1100)}}

This corresponds to all the root-to-sink paths in the
subgraph of C given in Figure 3.

Wy
Wo k

Ws We

Figure 3: Subgraph for event A in Example 2

3.3 MESSAGE PASSING FROM
COMPATIBLE OBSERVATIONS ON
A CEG

The message passing algorithm is a function from the
original probabilities {m(w) | w € W} to revised prob-
abilities on the same graph {#(w) | w € W} condi-
tional on the observation A. Note that once edge-
probabilities have been revised, the resulting graph
may not be a minimal CEG (in that we may have
vertices within the graph which are the roots of iden-
tical sub-graphs). It is possible (although unnecessary
for information-propagating purposes) to add a fur-
ther algorithm step to produce a minimal CEG if this
is required. This step ensures that any vertices that
are equivalent are combined into a single position.

Messages are passed from the terminal edges back-
wards through the transporter CEG along neighbour-
ing edges until reaching the root in a collect step giving
a new pair {7(w), ®(w) | w € W}. We then move for-
ward from the root producing revised {7 (w) | w € W}.
Let W(—1) denote the set of positions all of whose
outgoing edges terminate in ws in C.

1. For any edge e(w,wy) such that w € W(-1), set
the potential T.(weo | w) = 0 if e(w, W) ¢ En,
and T, (Weo | W) = Te(Woo | w) if e(w,weo) € Ep.
Let the emphasis:

b(w) =

> Te(wee | w)

e€E(w)

Say that ws and each of these positions is accom-
modated.

2. For any position w all of whose children are ac-
commodated, and edge e(w,w'), set the potential
Te(w' | w) =0 if e(w,w') ¢ Ep, and 7. (w' | w) =
e(w' | w) ®(w') if e(w,w') € Ex. Let the em-

phasis:
POREACEED

e€E(w)

d(w) =

Say that w is acommodated.

3. Repeat step 2 until all w € W are accommodated.
This completes the collect steps.

4. For all w € W, set:

w(w)=0 ifr(w)=0
7(w) = % if 7(w) #0

where T(w) = {7.(w' | w) | e(w,w") € E(w)}.
Clearly we have that:
if e(w,w') ¢ Ey

Te(w' | w)
®(w)

fe(w' | w) =0

A

fe(w' | w) = if e(w,w') € Ea



A proof of these results is given in the appendix.

Note that as we move forward through the graph the
updated probabilities of u(wg,w) subpaths will be of
the form:

7y (w | wo) = Hﬁ'e(wi+1 | w;)
=0

and we get:

tAw)= Y

ne{p(wo,w)}

u(w | wo)

From the definition of accommodation, the order of
these operations (like the perfect order used to update
a triangulated BN) depends only on the toplogy of C,
so it can be set up beforehand.

Example 3

Steps 1, 2 and 3 give us the graph in Figure 4. Step 4
gives us the CEG in Figure 5 (note that our CEG is
again simple, and also minimal without the need for
the additional step previously mentioned).

0.65 + 0.315 0.65

0.7 x 0.65

we 0.65

Figure 4: Potentials and emphases added

0.65/0.965 = 0.674

Wy

057910771 =075 0.315/0.965 = 0.326

Wy 0.65/0.9 =0.722

0.63/0.767 = 0.822

Wo

0.192/0.771 = 0.249

0.137/0.767 = 0.178

Ws We

Figure 5: Updated CEG Cx

Note that, in analogy with equation (6) of Cowell and
Dawid (1992), the conditional probability of any atom

A= (w0 = w)\[O], 6)‘[1],11),\[1], cee :e)\[n(/\)]awoo) is
given by the invariance formula:
n(A)
n(\) [T 7(exli])
T\ [A) =70V = ] #leliD) = 55
i=1 1;[0 O (wy[i])

Also note that at the cost of some computation, we
can perform inference on the reduced graph Cy whose
edges E(Cy) are just the edges e in E(C) with non-
zero probabilities 7 (e), and whose vertices W (C)y) are
the w € W(C) for which ®(w) # 0. The non-zero
edge and vertex probabilities of C' then simply map
on to their corresponding edge and vertex probabilities
in Cj. Note that, unlike for the BN, any non trivial
C'—compatible observation strictly reduces the number
of edges in the edge set after this operation.

A pseudo-code version of our algorithm is provided
below:

Let C(W(C), E(C)) be a transporter CEG with edges
in E(C) having labels e;, i = 1,2,...n,, such that
i < j = e; ¥ ej (e; does not lie downstream of e; on
any wy — Wee path); and positions in W(C)\{w}
having labels w;, i =0,1,2,...my,, such that i < j =
w; ¥ wj. To update the edge-probabilities on C fol-
lowing observation of an event A, do:

(1) Set A=¢
(2) Set B=¢
(3) Set i =1
(4) Repeat

(a) Select e;
(b) If e; € Ep, add e; to A
otherwise, set 7., =0
(c)Seti=i+1
Untili =n, +1
(5) Set P(weo) =1

(6) Set j = my,
(7) Repeat
(a) Select w;
(b) Repeat
(i) Select e(w;,w’) € E(w;) N A
(i) Set 7e(wj | wj) = me(w} | wy) ®(w))
(ili) Add e(w;,w’) to B

Until E(w;)NACB
(€) Set D) = X\ puy) 7 (W) | 15)
(d)Set j=5-1
Until j = —1
(8) For each e(w,w") € Ex, set 7. (w' | w) = %
(9) Return {7.}

4 A CLOSER LOOK AT OUR
EXAMPLE

Consider the CEG in Figure 2 and let the 16 edges be
labelled e; in the same order as the {;} thereon. In



Examples 1 to 3 we showed how to create and use a
Transporter CEG without concerning ourselves with a
context. We now add that context and suppose that
this CEG represents a Treatment regime for a serious
medical condition, and the edges carry the meanings
given in Table 2:

Table 2: Edge descriptors

Edge Description

ey Not critical — Treatment prescribed I

es Liver failure — Treatment ... II

es Liver & Kidney failure — Treatment ... II
e4 Responds to I — Full recovery

es No response to I — Surgery prescribed III
€6, €3 Responds to II — Surgery ... III

er, €eg No response to I — Surgery ... IV

€1o Recovery — Lifetime monitoring

el Recovery — Lifetime medication

ei1a,e13  Death in surgery

€14 Survives surgery IV — Treatment ... V
es Recovery — Lifetime on treatment V

€16 No response to V — Dies

As alluded to in section 2, it is not possible to represent
this regime efficiently as a BN, nor yet as a context-
specific BN, given that the asymmetry of the prob-
lem does not just lie in it having asymmetric sample
space structures. By equating the descriptions of edges
eq and ejg; edges ey and e;5; and edges e;2,e13 and
€16, we can however approximate the problem with
a 4-variable BN; where X Diagnosis and initial treat-
ment can take values corresponding to the outcomes
{Not critical, Liver failure, Liver & Kidney failure};
X 2nd treatment to { None, 111, IV}; X3 3rd treatment
to {None, V}; and X4 Response to {Death, Partial re-
covery, Full recovery}. The BN for this approximation
to the model is given in Figure 6.

X3 X,

X X4
Figure 6: BN for our example

To store the model using a CEG requires 16 cells (cor-
responding to the 16 edges), but in this BN 27 cells (9
for the clique {Xl,XQ} and 18 for {XQ,X3,X4}), 14
of which are storing the value zero.

The event A in our example corresponds to the ob-
servation that a patient was not diagnosed with Liver
and Kidney failure, and is still alive. Propagation
of this event enables a practitioner to establish prob-

ability distributions for the possible histories of our
patient. Note that it is only the fact that we can de-
scribe A in such a simple manner that has allowed us
to approximate the problem with the BN in Figure 6.

Propagating of the event A using a simple Junction
Tree algorithm on the cliques of the BN takes a mini-
mum of 43 operations. Propagation on the CEG using
our algorithm requires 32 operations (corresponding
to 16 backward edges, 6 backward vertices and 10 for-
ward edges). So even in this simple example, using
the CEG is more efficient than the BN. The efficiency
here is due mainly to the fact that the clique probabil-
ity tables contain many zeros. This is reflected in the
CEG by the wy — we, paths not all having the same
length. It is this form of asymmetry in a model that
context-specific BNs do not cope with adequately, and
why CEGs are a better structure for use with this type
of problem.

The problems in which the algorithm described above
are most efficient are when the CEG structure is known
to be simple. To store the probability tables for the
CEG requires only N = #(W(C)) + #(E(C))
< 2#(E(C)) cells. In this case the collect step involves
only N calculations and the topology of the CEG is
valid so that in particular the original probability ta-
ble structure can be preserved. The potential product
necessitates only a single distribute step which again
only involves at most N calculations. For large trees
with much of the type of subtree symmetry discussed
above the propagation is extremely fast.

It is worth quickly looking at a very simple exam-
ple arising from model selection in graphical or par-
tition model problems, an area currently attracting
some interest: Consider a model with random vari-
ables Xi,...X,, where X; with M = 1/5(n — 1)
(n — 2) possible states, determines which pair of bi-
nary variables from {Xs,...X,} are dependent, all
other variables from {Xs,...X,} being independent
of each other and of the pair determined. The CEG of
this model has at most M (1 + 2n) edges and 2 + Mn
positions, whereas the BN is a single clique requiring
M x 2"~ cells for storage. As the number of opera-
tions required for propagation on both the BN and the
CEG is of the same order of magnitude as the number
of cells required for storage, it is clear that the CEG
is far more efficient in this example.

5 DISCUSSION

There are several advantages of this method over the
coding of this type of problem through a BN. Firstly,
the calculated probabilities can be projected back on
to the edges of the elicited tree, so that the conse-
quences of inferences given different types of informa-
tion can be immediately appreciated by the practi-



tioner. Secondly, the accommmodation of data in the
form of a compatible observation is much more general
than the accommodation of subsets of observations
from a predetermined set of random variables, so the
CEG provides a more flexible framework for propaga-
tion, particularly when data is contingently censored.
Thirdly, there are efficiency gains as outlined above.
We intend to show how great these gains can be for
very large problems in a later paper.

Note also that, as is the case with the triangulation
step in BN-based algorithms, there are faster algo-
rithms (Thwaites 2008) than the one described above,
although they lose some of this algorithm’s generality.
Our algorithms are currently being coded by Cowell
within freely available software, and will be available
shortly.

Of course BNs provide a simpler representation of
more symmetric problems and should always be pre-
ferred when the three contingencies are not satisified.
The CEG does not provide a universal improvement
over the BN for propagation. In particular in prob-
lems when the underlying BN is decomposable but the
CEG is not simple the BN propagation can be much
more efficient. But in highly asymmetric problems,
the CEG should definitely be a first choice.

It should be noted that it is also possible to define a
dynamic analogue of the CEG, and our investigation
of these suggests that a time-sliced CEG (analogous
to a time-sliced BN) will be an ideal vehicle for a dy-
namic updating algorithm. We hope to report on these
developments in the near-future.

APPENDIX
We claim that:

Te(w' | w) = m(Ae(w,w")) | A, A(w))
_ 7”(5(,“}‘)1”) if e(w,w') € Ey
0 if e(w,w") & Ea
Proof:

For a CEG C, and C'—compatible event A, let T' be
the tree associated with C, T} the tree associated with
Ca, and T{,) the subtree of T' containing only those
root-to-leaf paths in A. T\, differs from Ty in that
the former retains the edge-probabilities from 7.

Consider a position w € C' (w € Cy) corresponding to
a set of vertices {v;} € T. Then the subtrees rooted
in each v; are identical both in topology and in their
edge-probabilities.

If there is a subpath p(wp,w) which is not part of a
Wp — W path in A (ie. p(wg,w) exists in C, but not
in Cy) then there will exist a subset of {v;} which does
not exist in T (or T(4)). We split the set {v;} into:

{vi}ier vertices existing in T

{vitics vertices not existing in Ty
Because A is C—compatible, the subtrees in T{,)
rooted in each v; € {v;}icr are also identical both
in topology and in their edge-probabilities that they
retain from T'.

Suppose there exists an edge e(w,w') in C, then for

each v; € {v;}, there exists an edge e(v;,v}) in T' cor-
responding to this edge. Note that:
Aw) = | Av)
icIuJg
Ae(w,w') = | Ale(vs,0)))
icIuJg
e (Vi | v;) = me(w' |w) VielIUJ

and since the subtrees in T(,) rooted in each
v; € {v;}ier are identical, we also have:

(A | Aw) = 7(A | A(wy)
7 (A, Alelw, o)) | Awi)) = m(A, Ale(u,0) | A(oy))
fori,jel
[7(A | A(v;)) is the sum of the probabilities of all the
(Vi Vieaf) subpaths in T(ny, and
w(A, Ale(vi,v))) | A(v;)) is the sum of the probabili-
ties of all the u(v;, e(vi, v;), vy, Vieas) subpaths in ()]
So:
fre(w' | w) = m(Ae(w,w)) [ A, A(w))
T(A, A(w), Ale(w, w'")))
(A, A(w))
(AaUz’eIuJ[ (v Z),A(e(vi,vg))])
m(A, UiEIUJ A(vi))
(an expression evaluated on T")
since A(vi) N A(e(vj,v})) = ¢ for i # j
_ ierug ™A A(wi), Ale(vi, vj)))
ZieluJ”(AaA(Ui))
But ANA(v;) = ¢ for v; € {vi}ics , so this equals:
Dicr (A A(vi), Ae(vi, vj)))
ZieIﬂ-(AvA('Ui))
_ 2ier m(A Ale(vi, v)) | Awi)) w(A(vi))
- Yier T(A | A(vs)) m(A(vi))
m(A, Ale(v), 7)) | A(vj)) Yier m(A(vi))
m(A ] A(v))) Xier m(A(vi))

for any v; € {v;}ier
m(A, Ale(v;,v5)) | Alv;))
m(A | A(v;))

for any v; € {v;}ier

Turning our attention to the terms in the algorithm,
we claim that ®(w) = 7(A | A(v;)) and 7. (w' | w) =
(A Ale(vi,v)) | A@)) (v € {vikier) for all w,
e(w,w') € Cy, where {v;};cr is the set of vertices in
T(p) corresponding to w. We prove this by induction:



Step 1.

Consider positions w € W(—1). Then:
w) = ZTe(woo | w) = Zﬂ'e(woo | w)
= Zﬂ'e(vleaf | ’Ui) in T(A)
e

for any v; € {v; }ier

=m(A | Avi))

Step 2.

Suppose w is such that all of its outgoing edges termi-

nate in positions {w'} for which
O(w') =n(A | A(w})). Then:
@(w)zZTe w' | w) = Zﬂ'e B (w')
—Zﬂev\vl (A | A(v))
for any v; € {Ui}iel
= Z e(vi,vj)) | Awi)) w(A | A(vy))

But A(v})

equals:

= A(e(v;, v})) C A(v;) in a tree, so this

A(v;) [ Avi)

(A \ A(vi), Ale(vi, v7)), A(v;)

2 A
D (A Me(wn, o). A]) | Aws)
> s1

m(A,

e(vi,v7)) | Avi))

A(vi) | A(vi)) = m(A [ Avi))

Hence:

Te(w' | w) = me(w' | w) S(w')

=me(vj | v;) (A | A(vj))
for any v; € {Uz‘}iel
) | A(vi) m(A | A(v}))

m(A(e(vi, v;)
= n(A, Ale(vi,v})) | Avy))

We now combine our two results to give:
m(A, Ale(vj, v5)) | Alv)))
m(A [ A(v;))

_ Te(w' | w)
b (w)

fre(w' | w) =
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