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tA Chain Event Graph (CEG) is a graphi
almodel whi
h is designed to embody 
onditionalindependen
ies in problems whose state spa
esare highly asymmetri
 and do not admit anatural produ
t stru
ture. In this paper wepresent a probability propagation algorithmwhi
h uses the topology of the CEG to build atransporter CEG. Intriguingly, the transporterCEG is dire
tly analogous to the triangulatedBayesian Network (BN) in the more 
onven-tional jun
tion tree propagation algorithmsused with BNs. The propagation method usesfa
torization formulae also analogous to (butdi�erent from) the ones using potentials on
liques and separators of the BN. It appearsthat the methods will be typi
ally more eÆ-
ient than the BN algorithms when applied to
ontexts where there is signi�
ant asymmetrypresent.1 INTRODUCTIONBased on an event tree, a Chain Event Graph (CEG)is a more expressive alternative to a dis
rete BayesianNetwork (BN), embodying 
olle
tions of 
onditionalindependen
e statements in its topology. In Andersonand Smith (2008) it is shown not only how asymme-tries in a problem's sample spa
e 
an be representedexpli
itly through the topology of its CEG, but alsohow it 
an express a mu
h wider range of types of 
on-ditional independen
e statement not simultaneouslyexpressible through a single BN. As with the BN, theCEG of an hypothesised model 
an be interrogated us-ing natural language before the graph is embellishedwith probabilities. In Thwaites and Smith (2006) andRi

omagno and Smith (2005) we demonstrate howthe CEG 
an also be used to represent and analysevarious 
ausal hypotheses. In this paper we 
ontinuethe development of CEGs by demonstrating how the

graph provides a useful stru
ture for fast probabilitypropagation in asymmetri
 models.It has been noted that the CEG is an espe
ially power-ful framework for inferen
e when a probability modelis highly asymmetri
 and eli
ited through a des
rip-tion of how situations unfold. Although theoreti
allya BN 
an be used in this 
ontext, the 
lique probabil-ity tables are then very sparse and 
ontain many ze-ros or repeated probabilities. This impedes fast prop-agation algorithms and has led to the developmentof many 
ontext spe
i�
 variants of BNs (Boutilieret al 1996, M
Allester et al 2004, Poole and Zhang2003, Salmeron et al 2000), often based on trees within
liques. These developments provoke the question asto whether a single tree might be used for propagationinstead of the BN. Now obviously the event tree itselfexpresses no 
onditional independen
ies in its topol-ogy and these independen
ies are the building blo
ksof 
urrent propagation algorithms. However, unlikethe event tree, the CEG expresses a fairly 
omprehen-sive 
olle
tion of 
onditional independen
ies. In thispaper we demonstrate the surprising fa
t that thereis a dire
t analogue between a distribution on a BNexpressed as a produ
t of potentials supported by agraph of 
liques and separators, and propagation al-gorithms on CEGs using the distributions on the 
hil-dren of the CEG's non-leaf nodes and marginal likeli-hoods on the verti
es themselves. This enables us todevelop fast propagation algorithms that use a singlegraph, the transporter CEG { analogous to a triangu-lated BN { as its framework. This framework is highlyeÆ
ient for asymmetri
/non-produ
t-spa
e 
ontexts,and in parti
ular does not involve propagating zerosin sparse but large probability tables, nor 
ontinuallyrepeating the same 
al
ulations, whi
h would be the
ase if we were to use the BN as a framework in thissort of environment with a naive BN propagation al-gorithm.In the next se
tion we formally de�ne the transporterCEG C(T ) of a hypothesised probability tree T . In



se
tion 3 we present an algorithm analogous to thatof Cowell and Dawid (1992) for a BN where 
ondi-tional probability tables asso
iated with the 
hildrenof a given vertex of the CEG take the role of 
liques,and vertex probabilies take the role of separators. Inse
tion 4 we demonstrate the eÆ
ien
y of this algo-rithm with a simple example.2 PROBABILITY TREES ANDCHAIN EVENT GRAPHSProbability trees (Shafer 1996), and their 
ontrol ana-logues de
ision trees, have been found to be a very nat-ural and expressive framework for probability and de-
ision problems, and they provide an ex
ellent frame-work for des
ribing sample spa
e asymmetry and inho-mogeneity in a given 
ontext (see for example Fren
hand Insua (2000)). We start with an event tree T withvertex set V (T ) and (dire
ted) edge set E(T ). Hen
e-forth 
all the tree's non-leaf verti
es fvg situations,and denote this set of verti
es S(T ) � V (T ). We 
an
onvert an event tree into a probability tree by spe
ify-ing a transition matrix from its verti
es V (T ), wherethe absorbing states 
orrespond to the leaf verti
es.Transition probabilities from a situation are zero ex-
ept for transitions to one of that situation's 
hildren.This makes the transition matrix upper triangular.Su
h a matrix would look like the one in Table 1 whi
hshows part of the matrix for the problem des
ribed inExample 1. Note that ea
h transition probability 
anbe identi�ed by an edge on the tree.Table 1: Part of the transition matrix for Example 1v0 v1 v2 v3 v14 v24 v34 v15 v25 � � � v11 � � �v0 0 �1 �2 �3 0 0 0 0 0 � � � 0 � � �v1 0 0 0 0 �5 0 0 0 0 � � � �4 � � �v2 0 0 0 0 0 �6 0 �7 0 � � � 0 � � �v3 0 0 0 0 0 0 �8 0 �9 � � � 0 � � �... ... ...One way of seeing 
onditional independen
estatements on a BN is as identities in 
ertain ve
tors of
onditional probabilties { expli
itly those probabilityve
tors asso
iated with di�erent an
estor 
on�gura-tions but the same parent 
on�guration of a variablein the BN (Ri

omagno and Smith 2007). There is alarge 
lass of models where the probabilities in someof the rows of the transition matrix 
an be identitifedwith ea
h other. The CEG is a topologi
al representa-tion of this 
lass of models, and the transporter CEGde�ned below is a subgraph of the CEG.Let T (vi), i = 1; 2 be the unique subtrees whose rootsare the situations vi, and whi
h 
ontain all verti
esafter vi in T . Say v1 and v2 are in the same positionw if:

1. the trees T (v1) and T (v2) are topologi
ally iden-ti
al.2. there is a map between T (v1) and T (v2) su
h thatthe edges in T (v2) are annotated, under that map,by the same (possibly unknown) probabilities asthe 
orresponding edges in T (v1).It is easily 
he
ked that the set W (T ) of positions wpartitions S(T ). Furthermore, somewhat more sub-tlely, if v1; v2 2 w and vij 2 V (T (vi)), then the vertexsets of T (vi) i = 1; 2 are mapped on to ea
h other bythis map, and vij 2 wj i = 1; 2 for some position wj(providing vij is not a leaf-vertex in either subtree).For details of this property see Anderson and Smith(2008).We now draw a new graph to depi
t both the samplespa
e of T and 
ertain 
onditional independen
e state-ments. The transporter CEG C(T ) is a dire
ted graphwhose verti
es W (C(T )) are W (T ) [ fw1g. There isan edge (e 2 E(C(T ))) from w1 to w2 6= w1 for ea
hsituation v2 2 w2 whi
h is a 
hild of a �xed repre-sentative v1 2 w1 for some v1 2 S(T ), and an edgefrom w1 to w1 for ea
h leaf node v 2 V (T ) whi
h isa 
hild of some �xed representative v1 2 w1 for somev1 2 S(T ). The transporter CEG (hen
eforth labelledsimply as C) is the subgraph of a CEG (de�ned in An-derson and Smith (2008)) where all undire
ted edgesin the CEG are omitted. The relationship between thetransporter CEG and the CEG is dire
tly analogousto the relationship between a triangulated BN and theoriginal BN. Certain 
onditional independen
e state-ments that 
an be lost through 
onditioning are simplyforgotten so that an homogeneous propagation algo-rithm 
an be 
onstru
ted on the basis of the enduring
onditional independen
ies. Unlike the BN, this CEG
an have many edges between two verti
es and alwayshas a single sink vertex w1. Although typi
ally hav-ing many fewer verti
es than T , it retains a depi
tionof the sample spa
e stru
ture of T . Thus it is easyto 
he
k that the set of root to leaf paths of the tree(representing the set of all possible unfoldings of thehistory of a unit) are in one to one 
orresponden
ewith the set of root to sink paths on the transporterCEG. The CEG-
onstru
tion pro
ess is illustrated inExample 1.Example 1Consider the tree in Figure 1, whi
h has 16 atoms(root-to-leaf paths). Note that as the subtrees rootedin the verti
es fvi4g are the same, and those rooted infvi5g are the same, the distribution on the tree 
an bestored using 7 
onditional tables whi
h 
ontain 16 (9free) probabilities.Our transporter CEG (Figure 2) is produ
ed by 
om-bining the verti
es fvi4g into one position w4, the ver-



ti
es fvi5g into one position w5, the verti
es fvi6g intoone position w6, and all leaf-verti
es into a single sink-node w1. The full CEG for our example is simple { ithas no undire
ted edges, and is identi
al to the trans-porter CEG C. For a simple CEG, all the 
onditionalindependen
ies inherent in the problem are 
onveyedby the transporter CEG.
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Figure 2: Transporter CEG for Example 1Figure 2 shows the probabilities of rea
hing ea
h po-sition w (the event rea
hing w, denoted �(w), is theunion of all root-to-sink paths passing through w). Italso shows ea
h edge-probability �e(w0 j w)(= �(�(e(w;w0)) j �(w)), where �(e(w;w0)) is theunion of all root-to-sink paths utilising the edgee(w;w0) ).The problem represented by the tree in Figure 1 isasymmetri
 in that not all the root-to-leaf paths areof the same length, and also in the lo
al stru
ture as-so
iated with its verti
es. We do not know whetherthe verti
es fvi4g are related in any 
ontextual way tothe verti
es fvi5g or fvi6g, and hen
e we 
annot obvi-ously de�ne variables on the sigma-algebra of the treeto allow us to represent the problem as a BN. Evensupposing we were able to represent the problem in

su
h a way, the 
onditional independen
ies embodiedin the problem (and in our transporter CEG) 
annotbe eÆ
iently 
oded in a BN without introdu
ing ta-bles with many zeros. Consequently, even in this verysimple example we have eÆ
ien
y gains in storing thisdistribution over using a saturated model, a BN, or atree.3 A SIMPLE PROPAGATIONALGORITHM3.1 THE FRAMEWORKTo spe
ify the joint distribution of all random vari-ables measurable with respe
t to a CEG we simplyneed to spe
ify the ve
tor of 
onditional probabilitymass fun
tions asso
iated with ea
h of its positions.The �rst step of our propagation algorithm is analo-gous to the triangulation step for a BN, whi
h allowsus to retain all 
onditional independen
e properties atthe 
ost of a possible loss of eÆ
ien
y. To do this weignore 
onditional independen
e statements 
oded bythe undire
ted edges of the CEG and work only withthe subgraph 
onsisting of its positions, together withits dire
ted edges, but not its undire
ted edges { ourtransporter CEG C.For ea
h position w 2 W = W (C)nfw1g we store ave
tor of probabilites �(w) = f�e(w0 j w) j e(w;w0) 2E(w)g where E(w) � E(C) is the set of all edgesemanating from w. �(w) is of 
ourse a 
onditionalprobability distribution. We let X(w) be the randomvariable taking values on f1; 2; : : : ; n(E(w))g (wheren(E(w)) is the number of edges emanating from w)whose probability mass fun
tion is given by the 
om-ponents of �(w) taken in order. The positions w 2Wtake the role of the 
liques in a triangulated BN, whilstthe ve
tors f�(w) j w 2 Wg are analogous to the 
liqueprobability tables.We 
an now spe
ify the probability �� of every atom �(a root to sink path of C, of length n(�) ) as a fun
tionof f�(w) j w 2 Wg and C. If:� = (w0 = w�[0℄; e�[1℄; w�[1℄; : : : ; e�[n(�)℄; w1)then �� = n(�)Yi=1 �(e�[i℄)where �(e�[i℄) is a 
omponent of the probability ve
-tor �(w�[i � 1℄), 1 � i � n(�). It follows that thedistribution of any random variable measurable withrespe
t to C 
an be 
al
ulated from f�(w) j w 2Wg.3.2 COMPATIBLE OBSERVATIONSRe
all that propagation algorithms for BNs based ontriangulation are only designed to propagate informa-tion that 
an be expressed in the form



O(A) = fXj 2 Ajg for some subsets fAjg of thesample spa
es of fXjg the vertex-variables of the BN.Propagating information about the value of some gen-eral fun
tion of the vertex variables using lo
al mes-sage passing is not generally possible, be
ause 
ondi-tioning on the values of su
h a fun
tion 
an destroy the
onditional independen
ies on whi
h the lo
al steps ofthe propagation algorithm depend for their validity.In the same way the types of observation we 
an ef-�
iently propagate using C and f�(w) j w 2 Wgneeds to be 
onstrained. In general an observation
an be identi�ed with a subset � of the set of allroot to sink paths f�g. The most obvious 
onstrain-ing assumption on � (and the one we will hen
eforthmake in this paper) about what we might learn isthat our observation � 
an be identi�ed with havinglearned that fX(w) 2 A(w)g for some subsets fA(w)gof the sample spa
es of the position random variablesfX(w)g. Call su
h a set C�
ompatible. Note that �is C�
ompatible if and only if there exists possiblyempty subsets fE�(w) j w 2Wg su
h that� = f� j e� 2 E�(w) for some w 2W; for ea
h edgee� on the path � in CgSo we 
an identify a 
ompatible observation with theset of edges E� = Sw2W E�(w) � E(C). We notethat the set of 
ompatible observations is large andin parti
ular when the CEG is expressible as a BN
ontains all sets of the form O(A) de�ned above.Example 2Consider:� = f� j e� 2 fe1(w0; w1); e2(w0; w2); e4(w1; w1);e5(w1; w4); e6(w2; w4); e7(w2; w5); e10(w4; w1);e11(w4; w1); e14(w5; w6); e15(w6; w1)ggThis 
orresponds to all the root-to-sink paths in thesubgraph of C given in Figure 3.
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3.3 MESSAGE PASSING FROMCOMPATIBLE OBSERVATIONS ONA CEGThe message passing algorithm is a fun
tion from theoriginal probabilities f�(w) j w 2Wg to revised prob-abilities on the same graph f�̂(w) j w 2 Wg 
ondi-tional on the observation �. Note that on
e edge-probabilities have been revised, the resulting graphmay not be a minimal CEG (in that we may haveverti
es within the graph whi
h are the roots of iden-ti
al sub-graphs). It is possible (although unne
essaryfor information-propagating purposes) to add a fur-ther algorithm step to produ
e a minimal CEG if thisis required. This step ensures that any verti
es thatare equivalent are 
ombined into a single position.Messages are passed from the terminal edges ba
k-wards through the transporter CEG along neighbour-ing edges until rea
hing the root in a 
olle
t step givinga new pair f� (w);�(w) j w 2Wg. We then move for-ward from the root produ
ing revised f�̂(w) j w 2Wg.Let W (�1) denote the set of positions all of whoseoutgoing edges terminate in w1 in C.1. For any edge e(w;w1) su
h that w 2W (�1), setthe potential �e(w1 j w) = 0 if e(w;w1) =2 E�,and �e(w1 j w) = �e(w1 j w) if e(w;w1) 2 E�.Let the emphasis:�(w) = Xe2E(w) �e(w1 j w)Say that w1 and ea
h of these positions is a

om-modated.2. For any position w all of whose 
hildren are a
-
ommodated, and edge e(w;w0), set the potential�e(w0 j w) = 0 if e(w;w0) =2 E�, and �e(w0 j w) =�e(w0 j w) �(w0) if e(w;w0) 2 E�. Let the em-phasis: �(w) = Xe2E(w) �e(w0 j w)Say that w is a
ommodated.3. Repeat step 2 until all w 2 W are a

ommodated.This 
ompletes the 
olle
t steps.4. For all w 2W , set:�̂(w) = 0 if � (w) = 0�̂(w) = � (w)�(w) if � (w) 6= 0where � (w) = f�e(w0 j w) j e(w;w0) 2 E(w)g.Clearly we have that:�̂e(w0 j w) = 0 if e(w;w0) =2 E��̂e(w0 j w) = �e(w0 j w)�(w) if e(w;w0) 2 E�



A proof of these results is given in the appendix.Note that as we move forward through the graph theupdated probabilities of �(w0; w) subpaths will be ofthe form: �̂�(w j w0) =Yi=0 �̂e(wi+1 j wi)and we get:̂�(�(w)) = X�2f�(w0;w)g �̂�(w j w0)From the de�nition of a

ommodation, the order ofthese operations (like the perfe
t order used to updatea triangulated BN) depends only on the toplogy of C,so it 
an be set up beforehand.Example 3Steps 1, 2 and 3 give us the graph in Figure 4. Step 4gives us the CEG in Figure 5 (note that our CEG isagain simple, and also minimal without the need forthe additional step previously mentioned).
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1Figure 5: Updated CEG C�Note that, in analogy with equation (6) of Cowell andDawid (1992), the 
onditional probability of any atom

� = (w0 = w�[0℄; e�[1℄; w�[1℄; : : : ; e�[n(�)℄; w1) isgiven by the invarian
e formula:�(� j �) = �̂(�) = n(�)Yi=1 �̂(e�[i℄) = n(�)Qi=1 �(e�[i℄)n(�)�1Qi=0 �(w�[i℄)Also note that at the 
ost of some 
omputation, we
an perform inferen
e on the redu
ed graph C� whoseedges E(C�) are just the edges e in E(C) with non-zero probabilities �̂(e), and whose verti
es W (C�) arethe w 2 W (C) for whi
h �(w) 6= 0. The non-zeroedge and vertex probabilities of C then simply mapon to their 
orresponding edge and vertex probabilitiesin C�. Note that, unlike for the BN, any non trivialC�
ompatible observation stri
tly redu
es the numberof edges in the edge set after this operation.A pseudo-
ode version of our algorithm is providedbelow:Let C(W (C); E(C)) be a transporter CEG with edgesin E(C) having labels ei; i = 1; 2; : : : ne, su
h thati < j ) ei � ej (ei does not lie downstream of ej onany w0 ! w1 path); and positions in W (C)nfw1ghaving labels wi; i = 0; 1; 2; : : :mw, su
h that i < j )wi � wj . To update the edge-probabilities on C fol-lowing observation of an event �, do:(1) Set A = �(2) Set B = �(3) Set i = 1(4) Repeat(a) Sele
t ei(b) If ei 2 E�, add ei to Aotherwise, set �̂ei = 0(
) Set i = i+ 1Until i = ne + 1(5) Set �(w1) = 1(6) Set j = mw(7) Repeat(a) Sele
t wj(b) Repeat(i) Sele
t e(wj ; w0j) 2 E(wj) \ A(ii) Set �e(w0j j wj) = �e(w0j j wj) �(w0j)(iii) Add e(wj ; w0j) to BUntil E(wj) \ A � B(
) Set �(wj) =Pe2E(wj) �e(w0j j wj)(d) Set j = j � 1Until j = �1(8) For ea
h e(w;w0) 2 E�, set �̂e(w0 j w) = �e(w0 j w)�(w)(9) Return f�̂eg4 A CLOSER LOOK AT OUREXAMPLEConsider the CEG in Figure 2 and let the 16 edges belabelled ei in the same order as the f�ig thereon. In



Examples 1 to 3 we showed how to 
reate and use aTransporter CEG without 
on
erning ourselves with a
ontext. We now add that 
ontext and suppose thatthis CEG represents a Treatment regime for a seriousmedi
al 
ondition, and the edges 
arry the meaningsgiven in Table 2:Table 2: Edge des
riptorsEdge Des
riptione1 Not 
riti
al { Treatment pres
ribed Ie2 Liver failure { Treatment : : : IIe3 Liver & Kidney failure { Treatment : : : IIe4 Responds to I { Full re
overye5 No response to I { Surgery pres
ribed IIIe6; e8 Responds to II { Surgery : : : IIIe7; e9 No response to II { Surgery : : : IVe10 Re
overy { Lifetime monitoringe11 Re
overy { Lifetime medi
atione12; e13 Death in surgerye14 Survives surgery IV { Treatment : : : Ve15 Re
overy { Lifetime on treatment Ve16 No response to V { DiesAs alluded to in se
tion 2, it is not possible to representthis regime eÆ
iently as a BN, nor yet as a 
ontext-spe
i�
 BN, given that the asymmetry of the prob-lem does not just lie in it having asymmetri
 samplespa
e stru
tures. By equating the des
riptions of edgese4 and e10; edges e11 and e15; and edges e12; e13 ande16, we 
an however approximate the problem witha 4-variable BN; where X1 Diagnosis and initial treat-ment 
an take values 
orresponding to the out
omesfNot 
riti
al, Liver failure, Liver & Kidney failureg;X2 2nd treatment to fNone, III, IVg; X3 3rd treatmentto fNone, Vg; and X4 Response to fDeath, Partial re-
overy, Full re
overyg. The BN for this approximationto the model is given in Figure 6.
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X4Figure 6: BN for our exampleTo store the model using a CEG requires 16 
ells (
or-responding to the 16 edges), but in this BN 27 
ells (9for the 
lique fX1; X2g and 18 for fX2; X3; X4g), 14of whi
h are storing the value zero.The event � in our example 
orresponds to the ob-servation that a patient was not diagnosed with Liverand Kidney failure, and is still alive. Propagationof this event enables a pra
titioner to establish prob-

ability distributions for the possible histories of ourpatient. Note that it is only the fa
t that we 
an de-s
ribe � in su
h a simple manner that has allowed usto approximate the problem with the BN in Figure 6.Propagating of the event � using a simple Jun
tionTree algorithm on the 
liques of the BN takes a mini-mum of 43 operations. Propagation on the CEG usingour algorithm requires 32 operations (
orrespondingto 16 ba
kward edges, 6 ba
kward verti
es and 10 for-ward edges). So even in this simple example, usingthe CEG is more eÆ
ient than the BN. The eÆ
ien
yhere is due mainly to the fa
t that the 
lique probabil-ity tables 
ontain many zeros. This is re
e
ted in theCEG by the w0 ! w1 paths not all having the samelength. It is this form of asymmetry in a model that
ontext-spe
i�
 BNs do not 
ope with adequately, andwhy CEGs are a better stru
ture for use with this typeof problem.The problems in whi
h the algorithm des
ribed aboveare most eÆ
ient are when the CEG stru
ture is knownto be simple. To store the probability tables for theCEG requires only N = #(W (C)) + #(E(C))< 2#(E(C)) 
ells. In this 
ase the 
olle
t step involvesonly N 
al
ulations and the topology of the CEG isvalid so that in parti
ular the original probability ta-ble stru
ture 
an be preserved. The potential produ
tne
essitates only a single distribute step whi
h againonly involves at most N 
al
ulations. For large treeswith mu
h of the type of subtree symmetry dis
ussedabove the propagation is extremely fast.It is worth qui
kly looking at a very simple exam-ple arising from model sele
tion in graphi
al or par-tition model problems, an area 
urrently attra
tingsome interest: Consider a model with random vari-ables X1; : : : Xn, where X1 with M = 1=2(n � 1)(n � 2) possible states, determines whi
h pair of bi-nary variables from fX2; : : : Xng are dependent, allother variables from fX2; : : :Xng being independentof ea
h other and of the pair determined. The CEG ofthis model has at most M(1 + 2n) edges and 2 +Mnpositions, whereas the BN is a single 
lique requiringM � 2n�1 
ells for storage. As the number of opera-tions required for propagation on both the BN and theCEG is of the same order of magnitude as the numberof 
ells required for storage, it is 
lear that the CEGis far more eÆ
ient in this example.5 DISCUSSIONThere are several advantages of this method over the
oding of this type of problem through a BN. Firstly,the 
al
ulated probabilities 
an be proje
ted ba
k onto the edges of the eli
ited tree, so that the 
onse-quen
es of inferen
es given di�erent types of informa-tion 
an be immediately appre
iated by the pra
ti-



tioner. Se
ondly, the a

ommmodation of data in theform of a 
ompatible observation is mu
h more generalthan the a

ommodation of subsets of observationsfrom a predetermined set of random variables, so theCEG provides a more 
exible framework for propaga-tion, parti
ularly when data is 
ontingently 
ensored.Thirdly, there are eÆ
ien
y gains as outlined above.We intend to show how great these gains 
an be forvery large problems in a later paper.Note also that, as is the 
ase with the triangulationstep in BN-based algorithms, there are faster algo-rithms (Thwaites 2008) than the one des
ribed above,although they lose some of this algorithm's generality.Our algorithms are 
urrently being 
oded by Cowellwithin freely available software, and will be availableshortly.Of 
ourse BNs provide a simpler representation ofmore symmetri
 problems and should always be pre-ferred when the three 
ontingen
ies are not satisi�ed.The CEG does not provide a universal improvementover the BN for propagation. In parti
ular in prob-lems when the underlying BN is de
omposable but theCEG is not simple the BN propagation 
an be mu
hmore eÆ
ient. But in highly asymmetri
 problems,the CEG should de�nitely be a �rst 
hoi
e.It should be noted that it is also possible to de�ne adynami
 analogue of the CEG, and our investigationof these suggests that a time-sli
ed CEG (analogousto a time-sli
ed BN) will be an ideal vehi
le for a dy-nami
 updating algorithm. We hope to report on thesedevelopments in the near-future.APPENDIXWe 
laim that:�̂e(w0 j w) , �(�(e(w;w0)) j �;�(w))= ( �e(w0 j w)�(w) if e(w;w0) 2 E�0 if e(w;w0) 62 E�Proof:For a CEG C, and C�
ompatible event �, let T bethe tree asso
iated with C, T� the tree asso
iated withC�, and T(�) the subtree of T 
ontaining only thoseroot-to-leaf paths in �. T(�) di�ers from T� in thatthe former retains the edge-probabilities from T .Consider a position w 2 C (w 2 C�) 
orresponding toa set of verti
es fvig 2 T . Then the subtrees rootedin ea
h vi are identi
al both in topology and in theiredge-probabilities.If there is a subpath �(w0; w) whi
h is not part of aw0 ! w1 path in � (ie. �(w0; w) exists in C, but notin C�) then there will exist a subset of fvig whi
h doesnot exist in T� (or T(�)). We split the set fvig into:

fvigi2I verti
es existing in T�fvigi2J verti
es not existing in T�Be
ause � is C�
ompatible, the subtrees in T(�)rooted in ea
h vi 2 fvigi2I are also identi
al bothin topology and in their edge-probabilities that theyretain from T .Suppose there exists an edge e(w;w0) in C, then forea
h vi 2 fvig, there exists an edge e(vi; v0i) in T 
or-responding to this edge. Note that:�(w) = [i2I[J �(vi)�(e(w;w0)) = [i2I[J �(e(vi; v0i))�e(v0i j vi) = �e(w0 j w) 8i 2 I [ Jand sin
e the subtrees in T(�) rooted in ea
hvi 2 fvigi2I are identi
al, we also have:�(� j �(vi)) = �(� j �(vj))�(�;�(e(vi; v0i)) j �(vi)) = �(�;�(e(vj ; v0j)) j �(vj))for i; j 2 I[�(� j �(vi)) is the sum of the probabilities of all the�(vi; vleaf ) subpaths in T(�), and�(�;�(e(vi; v0i)) j �(vi)) is the sum of the probabili-ties of all the �(vi; e(vi; v0i); v0i; vleaf ) subpaths in T(�)℄So:�̂e(w0 j w) = �(�(e(w;w0)) j �;�(w))= �(�;�(w);�(e(w;w0)))�(�;�(w))= �(�;Si2I[J [�(vi);�(e(vi; v0i))℄)�(�;Si2I[J �(vi))(an expression evaluated on T )sin
e �(vi) \ �(e(vj ; v0j)) = � for i 6= j= Pi2I[J �(�;�(vi);�(e(vi; v0i)))Pi2I[J �(�;�(vi))But � \ �(vi) = � for vi 2 fvigi2J , so this equals:Pi2I �(�;�(vi);�(e(vi; v0i)))Pi2I �(�;�(vi))= Pi2I �(�;�(e(vi; v0i)) j �(vi)) �(�(vi))Pi2I �(� j �(vi)) �(�(vi))= �(�;�(e(vj ; v0j)) j �(vj)) Pi2I �(�(vi))�(� j �(vj)) Pi2I �(�(vi))for any vj 2 fvigi2I= �(�;�(e(vj ; v0j)) j �(vj))�(� j �(vj))for any vj 2 fvigi2ITurning our attention to the terms in the algorithm,we 
laim that �(w) = �(� j �(vi)) and �e(w0 j w) =�(�;�(e(vi; v0i)) j �(vi)) (vi 2 fvigi2I) for all w;e(w;w0) 2 C�, where fvigi2I is the set of verti
es inT(�) 
orresponding to w. We prove this by indu
tion:



Step 1.Consider positions w 2W (�1). Then:�(w) =Xe �e(w1 j w) =Xe �e(w1 j w)=Xe �e(vleaf j vi) in T(�)for any vi 2 fvigi2I= �(� j �(vi))Step 2.Suppose w is su
h that all of its outgoing edges termi-nate in positions fw0g for whi
h�(w0) = �(� j �(v0i)). Then:�(w) =Xe �e(w0 j w) =Xe �e(w0 j w) �(w0)=Xe �e(v0i j vi) �(� j �(v0i))for any vi 2 fvigi2I=Xe �(�(e(vi; v0i)) j �(vi)) �(� j �(v0i))But �(v0i) = �(e(vi; v0i)) � �(vi) in a tree, so thisequals: Xe �(�(e(vi; v0i));�(v0i) j �(vi))� �(� j �(vi);�(e(vi; v0i));�(v0i))=Xe �(�;�(e(vi; v0i));�(v0i) j �(vi))=Xe �(�;�(e(vi; v0i)) j �(vi))= �(�;�(vi) j �(vi)) = �(� j �(vi))Hen
e:�e(w0 j w) = �e(w0 j w) �(w0)= �e(v0i j vi) �(� j �(v0i))for any vi 2 fvigi2I= �(�(e(vi; v0i)) j �(vi)) �(� j �(v0i))= : : : = �(�;�(e(vi; v0i)) j �(vi))We now 
ombine our two results to give:�̂e(w0 j w) = �(�;�(e(vj ; v0j)) j �(vj))�(� j �(vj))= �e(w0 j w)�(w) �A
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