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Abstract

Much recent work has concerned sparse ap-
proximations to speed up the Gaussian pro-
cess regression from the unfavorable O(n3)
scaling in computational time to O(nm2).
Thus far, work has concentrated on mod-
els with one covariance function. However,
in many practical situations additive mod-
els with multiple covariance functions may
perform better, since the data may contain
both long and short length-scale phenomena.
The long length-scales can be captured with
global sparse approximations, such as fully
independent conditional (FIC), and the short
length-scales can be modeled naturally by
covariance functions with compact support
(CS). CS covariance functions lead to nat-
urally sparse covariance matrices, which are
computationally cheaper to handle than full
covariance matrices. In this paper, we pro-
pose a new sparse Gaussian process model
with two additive components: FIC for the
long length-scales and CS covariance func-
tion for the short length-scales. We give the-
oretical and experimental results and show
that under certain conditions the proposed
model has the same computational complex-
ity as FIC. We also compare the model per-
formance of the proposed model to additive
models approximated by fully and partially
independent conditional (PIC). We use real
data sets and show that our model outper-
forms FIC and PIC approximations for data
sets with two additive phenomena.

1 Introduction

Gaussian processes (GP) are powerful tools for
Bayesian nonlinear and nonparametric regression.

They can be used as prior for underlying latent func-
tion, on which the observations are conditioned (Ras-
mussen and Williams, 2006). The main limitation with
GP models is their unfavorable O(n3) scaling in train-
ing time and O(n2) in memory, where n is the size
of the training set. In recent years, much research has
concerned sparse approximations to speed up the com-
putations down to O(nm2) and reduce the memory re-
quirements to O(nm), with m � n (e.g. Snelson and
Ghahramani, 2006, 2007; Lawrence, 2003; Seeger et al.,
2003; Williams and Seeger, 2001; Quiñonero-Candela
and Rasmussen, 2005). Another approach to speed up
training and save memory is to use GPs with com-
pactly supported (CS) covariance functions. These
are special kinds of functions that construct naturally
sparse covariance matrices (e.g. Wendland, 2005; Ras-
mussen and Williams, 2006; Storkey, 1999).

In this paper, we will treat both the sparse GP ap-
proximations and GPs with naturally sparse covari-
ance function. These two concepts are rather differ-
ent, but share the property that they are computation-
ally more efficient than full GPs. The sparse approx-
imations considered here are fully and partially inde-
pendent conditional (FIC/PIC) (Snelson and Ghahra-
mani, 2006, 2007). The naturally sparse GP is dis-
cussed for a piecewise polynomial covariance function.
FIC provides a global approximation that performs
well with rather long length-scales. PIC combines both
local and global type of approximations and is able to
model also short length-scale phenomena. The prob-
lem with PIC is, however, that it introduces disconti-
nuities in the correlation structure. The CS covariance
functions, on the other hand, provide a natural way to
model the local phenomena without anomalies in the
correlation structure.

In many practical problems, it is plausible that the un-
derlying function combines both long and short length-
scale phenomena. In this case, we can construct an ad-
ditive GP model with two covariance functions. To our
best knowledge, the sparse GP literature thus far has



concentrated on modelling either long or short length-
scale phenomena. The purpose of this work is to add
these two concepts together to construct a sparse GP
model that is able to capture both local and global
properties at the same time. Therefore, we propose
to add up the covariance function induced by FIC ap-
proximation with a CS covariance function so that the
long length-scale phenomena are captured by FIC and
the local variations by CS function. We will apply the
model for real data sets and compare the results to ad-
ditive full GP models approximated by FIC and PIC.
We will show that our method outperforms the ap-
proximations in performance and is computationally
of same complexity under certain conditions.

2 Gaussian process regression

We will consider a regression problem, where we have
scalar observations y = {yi}n

i=1 at input locations X =
{xi}n

i=1 and the observations are assumed to satisfy

yi = g(xi) + ε, where ε ∼ N(0, σ2). (1)

Each of the input vectors xi is of dimension D, which
is assumed to be rather low (say D ≤ 3), and g is
a nonlinear latent function, which we are interested
in. The latent function is given a Gaussian process
prior, which implies that any finite subset of latent
variables, g = {g(xi}n

i=1, has a multivariate Gaus-
sian distribution. In particular, at the observed in-
put locations X the latent variables have distribution
p(g|X) = N(g|µ,Kn,n), where Kn,n is the covariance
matrix and µ the mean function. In this paper, with-
out loss of generality, we will use a zero-mean Gaussian
processes. The covariance matrix is constructed from
a covariance function k, which represents the prior as-
sumptions of the smoothness of the latent function.
Each element in the covariance matrix is evaluated as
[Kn,n]ij = k(xi,xj , θ) and a widely used covariance
function is the stationary squared exponential

kse(xi,xj) = σ2
se exp

(
−

D∑
d=1

(xi,d − xj,d)2/l2d

)
, (2)

where σ2
se is the scaling parameter and ld is the length-

scale that governs how fast the correlation drops
among direction d. From this on we denote the hy-
perparameters by θ = {σ2

se, l1, ..., lD, σ2}

Since the noise model, or the likelihood, is Gaussian
p(y|g,X, θ) = N(y|g, σ2I), we are able to marginalise
over the latent variables to obtain the marginal likeli-
hood

p(y|X, θ) = N(y|0,Kn,n + σ2I). (3)

After placing a prior for the hyperparameters p(θ), we
can find the maximum a posteriori (MAP) estimate θ̂

for the hyperparameters by maximising the log poste-
rior cost function,

θ̂=arg max
θ

[
log p(θ)− 1

2
log |Ky,y|−

1
2
yTK−1

y,yy
]

, (4)

where Ky,y = Kn,n + σ2I. Optimising the hyperpa-
rameters can also be considered as a model selection,
since we are fixing our GP model by setting the hy-
perparameters in their MAP estimate.

Conditioning on the data and the hyperparameter val-
ues, the posterior predictive distribution of the latent
variables g(X∗) at new input locations X∗ is Gaussian

p(g∗|X∗,D, θ̂) = N(g∗|µ∗,Σ∗,∗), (5)

where D = {y,X} and

µ∗ = K∗,nK−1
y,yy

Σ∗,∗ = K∗,∗ −K∗,nK−1
y,yKn,∗. (6)

In many practical situations one length-scale per input
dimension is too restrictive. Consider, for example,
time series data, which evolves rather smoothly be-
tween different years, but at the same time has faster,
monthly, variations (see figure 1). In this case, a more
reasonable model is

yi = g(xi) + ε = f(xi) + h(xi) + ε, (7)

where the latent function g is replaced by a sum of two
functions, of which the other is slowly and the other
fast varying. We can now place a Gaussian process
prior for both of the functions f and h and give them
different covariance functions that reflect our beliefs
about their smoothness properties. The sum of two
Gaussian variables is Gaussian and the prior for the
additive model is p(g|X) = N(g|0,K(h)

n,n + K(f)
n,n). The

marginal likelihood and posterior predictive distribu-
tion are as before with Kn,n = K(h)

n,n +K(f)
n,n. However,

if we are interested on only, say, phenomenon f , we
can consider the h part of the latent function as cor-
related noise and evaluate the predictive distribution
p(f |X∗,D, θ̂) = N(K(f)

∗,nK−1
y,yy,K(f)

∗,∗−K(f)
∗,nK−1

y,yK
(f)
n,∗).

The training of the hyperparameters is conducted via
gradient based optimisation. The computationally
most demanding part is the evaluation of the gradi-
ent of the log marginal likelihood

∂

∂θ
log p(y|X, θ) =

1
2
yTK−1

y,y

∂Ky,y

∂θ
K−1

y,yy

− 1
2
tr
(
K−1

y,y

∂Ky,y

∂θ

)
. (8)

The matrix inversion and the determinant in marginal
likelihood and its gradient scale as O(n3) in time. To-
gether with O(n2) memory requirements this prevents
the direct implementation of GP for large problems.



3 FIC and PIC sparse approximations

In this section, we consider the fully and partially in-
dependent conditional sparse approximations for GP.
We will give a short review of the methods, but read-
ers interested in detailed derivation of the approxima-
tions should refer to the original papers by Snelson and
Ghahramani (2006, 2007), or for a more general per-
spective to Quiñonero-Candela and Rasmussen (2005).

The approximations are based on introducing an addi-
tional set of latent variables u = {ui}m

i=1, called induc-
ing variables, that correspond to a set of input loca-
tions Xu, inducing inputs. The prior on latent function
is approximated by

p(g|X)≈q(g|X,Xu)=
∫

q(g|X,Xu,u)p(u |Xu)du, (9)

where g is conditionally dependent on u through the
inducing conditional q(g|X,Xu,u). In the FIC frame-
work, the latent variables are conditionally indepen-
dent given u. In this case, the inducing conditional
factorises into q(g|X,Xu,u) =

∏n
i=1 qi(gi|X,Xu,u).

In contrast, in PIC the latent variables are set into
blocks that are conditionally independent, but within
a block they are fully dependent. The approximate
conditionals of FIC and PIC can be summarised as

q(g|Xu,u) = N(Kn,uK−1
u,u u,mask (Kn,n −Qn,n,M)),

where Qa,b = Ka,uK−1
u,uKu,b and Kn,u is the covari-

ance between latent variables and the inducing vari-
ables. The function mask (K,M), with matrix M of
ones and zeros, returns a matrix Λ of size M and el-
ements Λij = Kij if Mij = 1 and zero otherwise. An
approximation with M = I corresponds to FIC and an
approximation, where M is block diagonal corresponds
to PIC.

By placing a zero-mean Gaussian prior on the inducing
variables, u ∼ N(0,Ku,u), and integrating over them
we get the approximate prior over latent variables

q(g|X,Xu) = N(0,Qn,n + Λ). (10)

Here the inducing inputs can be considered as an addi-
tional set of hyperparameters. The marginal likelihood
is p(y |X,Xu, θ) = N(0,Qn,n+Λ+σ2I), where the co-
variance is now a sum of the rank m matrix Qn,n and
(block)diagonal matrix Λ+σ2I. This leads to compu-
tational savings in training, since the crucial compu-
tations only require O(nm2). Other major advantage
is the save in memory requirements, since the sparse
approximations need only O(nm) memory compared
to O(n2) in full GP.

In the literature on FIC and PIC, the approximations
are used for the one covariance function regression

problem (1). The results show that the approxima-
tions are efficient for a wide variety of such problems
(Snelson, 2007). However, the two covariance function
regression problem (7) is somewhat trickier as will be
seen in the experiments. With FIC all the correla-
tions are induced through the inducing inputs. Thus,
modelling very short length-scale phenomena becomes
unpractical, since one would need infeasible many in-
ducing inputs to capture fast variations. PIC, on the
other hand, can capture short length-scales within a
block, but its shortcoming is that between the blocks
latent variables are independent. This leads to dis-
continuities in correlation structure and reduces the
predictive performance on the block boundaries.

4 Gaussian process with compact
support covariance function

In this section, we will consider Gaussian processes
with naturally sparse covariance matrix. We will first
give short introduction on compact support covariance
function, after which we consider their implementation
issues within GP framework.

4.1 Compact support

With a compactly supported covariance function we
mean a function that gives zero correlation between
data points whose distance exceeds a certain threshold.
Such functions form naturally sparse covariance matri-
ces, that give savings in computational time and mem-
ory requirements compared to full GPs. The challenge
in constructing CS covariance functions is to guarantee
their positive definiteness. A full support covariance
function can not be cut arbitrarily to obtain a compact
support, since the resulting function would not, in gen-
eral, be positive definite. One option is to use a family
of piecewise polynomial functions as, for example,

kpp =
σ2

pp

3
(1−r)j+2

+

(
(j2+4j+ 3)r2+(3j+6)r+3

)
, (11)

where j = bD/2c + 3 and r2 =
∑D

d=1(xi,d − xj,d)2/l2d
(see e.g. Wendland, 2005; Rasmussen and Williams,
2006). The function kpp is positive definite up to the
input dimensions D. There are many other CS co-
variance functions and, for example, Gneiting (2002)
proposed a method that constructs a CS covariance
function that preserves the smoothness properties of
powered exponential and Matern class of functions.

In this work, we concentrate on, how GP analysis can
efficiently be done with CS functions and leave the
comparison of different functions for future. The CS
covariance functions in relation to GPs have been stud-
ied already by, for example, Storkey (1999). He con-
sidered covariance matrices of Toeplitz form, which are



fast to handle due their banded structure. However,
constructing Toeplitz covariance matrices is not pos-
sible in two or higher dimensions without approxima-
tions. Here we will present an approach that works for
any kind of sparse covariance matrix.

The computationally intensive parts in the cost func-
tion (4) and its derivatives (8) are the determinant and
multiplication of matrix or vector by the inverse covari-
ance matrix. Albeit the covariance matrix is sparse its
inverse is usually full and requires time O(n3) to com-
pute. Fortunately, we are able to do all these calcu-
lations without forming the full inverse. The key role
is played by the Cholesky factorisation of a covariance
matrix.

4.2 The computations

The Cholesky factorization L of symmetric positive
definite matrix A is a lower triangular matrix such
that A = LLT. For full matrix, it can be found in
time O(n3). For sparse matrices, however, this is faster
since the sparsity is preserved in the Cholesky factori-
sation. The factorisation time depends on the sparsity
structure of the matrix A. It can be reduced by per-
muting the columns and rows of matrix so that the
number of non-zero elements in L are minimised (for
example, using minimum degree ordering or nested
dissection (Amestoy et al., 2004; Davis, 2006; Rue and
Martino, 2007)). The time needed for permutation is,
in general, negligible compared to the time needed for
other evaluations with GP. For example, in N×N lat-
tices and with small length-scale in CS function the
typical cost of factorising CS covariance matrix after
permutation is O(n3/2) for n = N2 and for N×N×N
lattices O(n2), for n = N3. After finding the Cholesky
decomposition of matrix A, we can efficiently evaluate
its log determinant and yTAy (O(n) and O(n log n)
operations with 2D lattice data).

The term that needs most concern is
tr(K−1

y,y∂Ky,y/∂θ) in the gradient of the marginal
likelihood (8). The matrix B = ∂Ky,y/∂θ has the
same sparsity structure as Ky,y. Thus, if we denote
Z = K−1

y,y we can write tr(ZB) = tr(ZspB), where Zsp

is a sparse representation of Z, which has non-zero
elements only where Bij 6= 0. We can obtain such a
matrix by using an algorithm introduced by Takahashi
et al. (1973).

The algorithm is derived as follows. First, determine
the Cholesky decomposition of Ky,y and write

LTZ = L−1. (12)

Next, take the diagonal of the Cholesky triangle, D =
mask(L, I), write the equation (12) as

DZ + (LT −D)Z = L−1, (13)

subtract the second term on the left hand side and
multiply by D−1 from left

Z = D−1L−1 −D−1(LT −D)Z. (14)

Now, since the inverse is symmetric, we can give a
recursive formula for the elements of the inverse as

Zij =
δij

D2
ii

− 1
Dii

n∑
k=i+1

LkiZkj , j ≥ i, i = n, ..., 1. (15)

We can find the upper triangle of the inverse by looping
i from n to 1 and j from n to i. The lower triangular
of Z can then be filled according to symmetry. To find
the sparse inverse we evaluate only a small fraction of
the elements.

Let us denote by C an adjacency matrix, which has
Cij = 1 if Lij 6= 0 or LT

ij 6= 0 and zero otherwise. Here
we consider Lij non-zero even if its numerical value
was zero, but it is symbolically non-zero (that is, it
has to be evaluated, when solving for sparse Cholesky
factorisation (Davis, 2006)). To find the sparse inverse,
we need to evaluate only the elements Zij such that
Cij 6= 0. To justify this, consider the recursive formula
(15). The algorithm needs at least all the elements
{Zij : Cij 6= 0}, since these are the elements that
are needed for the diagonal of Z. From the Cholesky
factorisation it follows that Cij is non-zero, if for any
k < i, j the elements Cik and Ckj are non-zero:

k < i, j Cik 6= 0 Ckj 6= 0 ⇒ Cij 6= 0.

This property ensures that using the equation (15) we
are able to find all the elements Zij , for which Cij 6= 0,
by looping i from n to 1 and at each i evaluating the
elements Zij , j ∈ ci = {j ≥ i, Cij 6= 0}. The algorithm
is discussed in detail by Niessner and Reichert (1983).

4.3 Computational complexity

The computational complexity and memory require-
ments of CS+FIC depend on the number of (symbol-
ically) nonzero elements in the Cholesky factorisation
of Ky,y. This is always equal or more than the num-
ber of non-zeros in the covariance matrix and with
2D and 3D lattice data it is O(n log n) and O(n4/3)
(Davis, 2006). If γk denotes the number of non-zero
elements outside the diagonal of column k of L, then
the computational cost for finding the sparse inverse is
O(
∑n

k=1 γk(γk +1)). To get an intuition of the compu-
tation time we can consider banded and full covariance
matrices as limiting cases. Finding the sparse inverse
of banded covariance matrix needs time O(n(b/2)2),
where b denotes the band width, and finding the full
inverse is O(n3/3) operation. The other sparse in-
verses place between these. For example, the average



γk of the two and three dimensional lattice data are
O(log n) and O(n1/3). Thus the recursion takes time
O(n log(n)2) and O(n5/3), respectively. For randomly
distributed data points this is an approximation.

5 Additive model with CS covariance
function and FIC

Here, we propose a new sparse GP model that com-
bines the ideas behind sparse approximations and CS
covariance functions.

5.1 Additive sparse GP model

The covariance matrix in the FIC approximate prior
(10) can be interpreted as a realisation of special kind
of covariance function kFIC = f(k(xi,xj , θ),Xu). This
is a function of the original covariance function, its
hyperparameters and the inducing inputs. By adding
up the FIC and CS covariance functions we are able to
construct a sparse GP model for the two component
regression problem (7) with prior

p(g|X,Xu, θ) = N(0,Qn,n + Λ+K(CS)
n,n ). (16)

We will refer to this later as CS+FIC model. Here, the
matrix Qn,n is of rank m and the matrix Λ+K(CS)

n,n is
sparse with the same sparsity structure as in K(CS)

n,n .
Now, we can conduct the training in similar manner
to FIC and PIC by using the Woodbury-Sherman-
Morrison lemma

(Qn,n + Λ̂)−1 = Λ̂
−1
−VVT, (17)

where

V = Λ̂
−1

Kg,uchol[(Ku,u + Ku,gΛ̂
−1

Kg,u)−1].

In case of PIC and FIC Λ̂ = Λ+σ2I and in CS+FIC
Λ̂ = K(CS)

n,n + Λ+σ2I. In FIC and PIC, most of the
time is spent in the matrix multiplications in V. The
inverse of Λ+σ2I can be evaluated in O(n), with FIC,
and in O(nb2), with PIC, where b is the blocksize. Af-
ter this, the rest of the computations required in the
log marginal likelihood and its gradients involve sums
and products of Λ̂

−1
and V with (block)diagonal ma-

trices and matrices of size at most n×m (for technical
details see, e.g., Snelson (2007))1.

5.2 Computational issues

The matrix multiplications between n × m matrices
are present also in CS+FIC model, and, thus, its com-
putational time is at least the same as for FIC and

1The Matlab implementation of the models used in this
work will be published in www.lce.hut.fi/research/mm/gp/

PIC. The interesting question, however, is what is
the upper bound for the computational complexity of
CS+FIC. The terms that need consideration are those
involving Λ̂. The multiplications Λ̂

−1
P, where P is

an n ×m matrix (for example, Kg,u in V), are com-
puted by solving m linear equations, and the terms
tr(Λ̂

−1
∂H/∂θ), where H has the same sparsity struc-

ture as Λ̂, are solved using the sparse inverse algo-
rithm described earlier. If we assume uniformly dis-
tributed 2D lattice data and small length-scale for CS
function, we need O(n3/2) time for the Cholesky fac-
torisation of Λ̂, O(nm log(n)) for solving the m lin-
ear equations and O(n log(n)2) for the sparse inverse.
With three dimensional lattice, the computations are
governed by the O(n2) scaling of the Cholesky fac-
torisation. We can now conclude that the computa-
tional complexity of the CS+FIC model is: O(nm2) ≤
OCS+FIC ≤ O(max(nm2, n log(n)2, n3/2)) for 1D and
2D lattice. For the 3D lattice the performance is
O(nm2) ≤ OCS+FIC ≤ O(max(nm2, n2)). The mem-
ory requirements are O(n log(n)) and O(n4/3) respec-
tively. Thus, if m ≥ log(n) and m ≥

√
n the training of

CS+FIC model scales up to a constant as the training
of FIC (For example 100 inducing inputs and 10 000
data points).

6 Experiments

In this section, we present results on applying the mod-
els discussed above to several data sets.

6.1 Maunaloa CO2 data

The data contain the atmospheric CO2 concentrations
(ppmv) collected at Mauna Loa Observatory, Hawaii,
every month from 1958 until 20042 (see figure 1(a)).
The data consist of 557 points (seven measurements
were missing) and were previously analysed, for exam-
ple, by Rasmussen and Williams (2006). They pre-
sented a sophisticated model that was able to capture
the periodicity, long term trend and changes in the pe-
riodicity. Here, the aim is to test sparse additive GP
models. The models compared are: full GP, FIC and
PIC with kse + kpp covariance function, and CS+FIC
model, where the CS part is given by kpp and FIC part
uses kse. We placed 24 inducing inputs in a regular
grid over the input space. Since FIC failed with 24 in-
ducing inputs, we ran additional experiments with 141
inducing inputs with FIC. The blocks for PIC were set
regularly so that the number of data points in a block
was approximately same as the number of inducing
inputs. The length-scales were given half Students’-t
prior with 3 degrees of freedom and variance 4 and

2http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2
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(b) The posterior predictive mean of the monthly and over-
all trend with CS+FIC. On the left the scale for the short
term trend and on the right for the long term trend.

Figure 1: The Maunaloa CO2 data and predictions
with CS+FIC model.

the magnitudes half Students’-t with 0.3 degrees of
freedom and variance 4.

The predictive mean of the CS+FIC model for the
short and long term behaviour are shown in the fig-
ure 1(b) and the model performances are presented
in the table 1. We conducted 10-fold cross-validation
and evaluated the root mean squared error (RMSE)
and the mean log predictive density (MLPD) for each
of the models. The CS+FIC was as good as the full
GP in both of the performance tests. PIC was little
worse than CS+FIC, which can be explained by the
discontinuities on the block boundaries. FIC with 24
inducing inputs did orders of magnitude worse than
all the other models, because it was able to capture
only the long trend phenomenon and considered the
monthly changes as noise. With 141 inducing inputs
FIC did better, since it was able to model also the
monthly changes. However, it was still worse than the
other models.

6.2 The US annual precipitation data

The US precipitation data consist of monthly precip-
itation measures recorded across the whole country

Table 1: The model performances in the Maunaloa
CO2 data obtained with 10-fold cross validation.

Model RMSE MLPD

CS+FIC (m=24) 0.317 -0.251
full GP 0.316 -0.250
FIC (m=24) 2.151 -2.189
FIC (m=141) 0.83 -1.265
PIC (m=24) 0.401 -0.318

from 1895 to 19973. The data consist of the spatial
co-ordinates and elevation of the stations, and the pre-
cipitation in millimeters per month. In total, there
are 11918 stations, but a high fraction of the mea-
surements are missing. For the analysis in this pa-
per, we collected the stations that recorded all the
measurements for the year 1995. This leads to total
5776 stations (the station locations are shown in figure
2(a)). The data was previously used by Paciorek and
Schervish (2006), who studied the subregion of Col-
orado with non-stationary covariance function. How-
ever, they recorded equally good results for stationary
covariance functions, which suggests that an additive
stationary model could work reasonably well also for
the whole country.

We will study the data first with a model that uses
only the spatial co-ordinates as inputs for GP. After
this we study the same data with all three explana-
tory variables. Since the number of data points is
infeasible high for full GP, we tested only FIC, PIC
and CS+FIC with the same covariance functions as
in the previous experiment. The inducing inputs were
treated in two different ways. First, they were ini-
tialised by picking 90 data points (for FIC we used
also 225 inducing inputs) randomly from the data and
optimized. This gave equally good results compared
to the model, where they were placed in regular lat-
tice over the country. Thus, we will report only the
results from the latter scheme. The blocks for the PIC
model were placed regularly over the country so that
the number of data points inside each block was ap-
proximately the same as the number of inducing in-
puts. For the training, the input co-ordinates were
scaled between 1-120 and the targets between -9-35.
The priors for hyperparameters were the same as in
the previous experiment.

The model performances were evaluated via 10-fold
cross validation. Results are shown in the tables 2
and 3. The posterior predictive mean of the precipita-
tion levels across the country is shown in figure 2(b).
Again in this data set, CS+FIC outperforms the FIC

3http://www.image.ucar.edu/GSP/Data/US.monthly.met/
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Figure 2: The US annual precipitation data. The up-
per figure shows the data points and the lower figure
shows the CS+FIC posterior mean of the annual pre-
cipitation in the US in 1995.

Table 2: The model performances in the US annual
precipitation data with spatial covariates obtained
with 10-fold cross validation.

Model RMSE MLPD

CS+FIC (m=90) 208.3 -2.164
FIC (m=90) 278.1 -2.444
FIC (m=225) 263.0 -2.394
PIC (m=90) 210.3 -2.175

and PIC models, but not as clearly as in Maunaloa
dataset. The precipitation level varies rather smoothly
across most of the US and, thus, FIC and PIC are able
to capture the behaviour in large areas in the east and
middle of the country. The quick changes in the pre-
cipitation level take place in the mountainous regions
in the west. These changes can be explained by the
elevation information, since the models with elevation
information have considerably better predictive per-
formance than the models without.

6.3 Computational performance

In the Maunaloa data set, the training time of CS+FIC
was the same as the training time of FIC/PIC. In this
case the data was collected with constant rate, which
resulted in banded (Toeplitz form) Λ̂, whose Cholesky

Table 3: The model performances in the US annual
precipitation data with spatial and elevation covariates
obtained with 10-fold cross validation.

Model RMSE MLPD

CS+FIC (m=90) 165.2 -1.788
FIC (m=90) 249.1 -2.321
FIC (m=225) 216.9 -2.189
PIC (m=90) 168.7 -1.898

factorisation is very sparse. In the precipitation data
sets, CS+FIC was little slower than FIC/PIC, but still
the training time was only few minutes with standard
office PC. The matrix Λ̂ had less than 3% non-zero
elements in all the data sets and the memory require-
ments of CS+FIC were the same as in FIC/PIC.

The scaling of the training time of CS+FIC was tested
by keeping the amount of inducing inputs and data
points constant at turn and altering the other. With
Maunaloa data set CS+FIC scaled exactly as FIC and
PIC. With the precipitation data sets the training time
of CS+FIC with fixed number of inducing inputs in-
creased slightly faster than theoretically. The reasons
for this are non uniformly collected data and the extra
overhead in the sparse inverse algorithm for keeping
track of the non-zero elements in Zsp. The sparse in-
verse algorithm is currently implemented with Matlab,
which results in rather high overhead in the for-loops.
Also, the short length-scale phenomena might not have
been present in the subsampled data sets. This in-
creases the sparsity of Λ̂ and speeds up the CS+FIC
model. When comparing the computation times, one
has to remember that in contrast to FIC/PIC the
training time of CS+FIC depends on the characteris-
tics of the data. Thus, direct comparison of the train-
ing times is hard.

Albeit we have considered only low dimensional prob-
lems, nothing prevents us to ably CS+FIC for high
dimensional problems as well. In general, the den-
sity of the sparse covariance matrix tends to increase
as the input dimension gets higher. If the data are
evenly distributed over the space, the number of data
points covered by constant length-scale increases to-
gether with dimensionality. However, in order to find
fast varying phenomena the data has to be densely
distributed across all dimensions. High dimensional
regression problems often seem to have broad trends,
partly because the density of the data is so low that
the fast phenomena can not be found. On request of
the reviewers we tested our method also in two data
sets, with higher dimensionality than three. The data
sets were forest fires data4, with 12 inputs and 517

4http://archive.ics.uci.edu/ml/datasets/Forest+Fires



data points, and add10 data5, with ten inputs and
5492 data points. The forest fires data did not con-
tain additive phenomena and the model performance
was equally good with all the models. The training
times were the same as in Maunaloa data. The add10
data consists of additive components that are functions
of different inputs. In this data the CS+FIC worked
slightly better and was as fast as in the US precipi-
tation data sets. Due to space constraints the exact
results were left out.

7 Conclusions

In this paper, we introduced an additive sparse Gaus-
sian process that can model both long and short
length-scale phenomena in the data. The model con-
sists of FIC sparse approximation, which is used for the
global phenomenon, and a compact support covariance
function to model the local behavior. The analysis of
the proposed model is conducted using sparse matrix
routines and sparse inverse algorithm introduced by
Takahashi et al. (1973). Under certain conditions the
computational time is shown to scale similarly to the
training time of FIC and PIC.

The CS+FIC model was compared to FIC and PIC
approximations with several data sets. We found that
the proposed model gives better overall performance
than FIC and PIC, if there are two additive phenom-
ena in the data, and equally good performance in non-
additive data sets. Approximating additive GP mod-
els with short length-scale phenomena by FIC leads
to poor performance, because the approximation is
global by its nature. PIC models rather well also short
length-scales, but its short coming are the discontinu-
ities in the correlation structure. Our model combines
the good global properties of FIC and the good local
properties of compact support covariance function.

In practical problems it is often reasonable to use ad-
ditive models for the purposes of data analysis. The
proposed CS+FIC model provides a practical tool for
modeling large data sets, which are infeasible for full
Gaussian processes. The CS+FIC model is faster and
requires less memory than full GP. It is also more ac-
curate than FIC and PIC in additive models.
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